精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,的中点,的中点,且为正三角形.

(1)求证:平面
(2)若,求点到平面的距离.
(1)详见解析;(2).

试题分析:(1)由等腰三角形三线合一得到,由中位线得到,从而得到,利用并结合直线与平面垂直的判定定理证明平面,从而得到,再结合以及直线与平面垂直的判定定理证明平面;(2)解法一是利用(1)中的条件得到平面,以点为顶点,为底面计算三棱锥的体积,然后更换顶点,变成以点为顶点,为底面来计算三棱锥,利用等体积法从而计算三棱锥的高,即点到平面的距离;解法二是作或其延长线于点,然后证明平面,从而得到的长度为点到平面的距离,进而计算的长度即可.
试题解析:(1)证明:在正中,的中点,所以
因为的中点,的中点,所以,故
平面
所以平面
因为平面,所以
平面
所以平面

(2)解法1:设点到平面的距离为
因为的中点,所以
因为为正三角形,所以
因为,所以
所以
因为
由(1)知,所以
中,
所以.
因为,所以
,所以
故点到平面的距离为
解法2:过点作直线的垂线,交的延长线于点

由(1)知,平面
所以平面
因为平面,所以
因为,所以平面
所以为点到平面的距离.
因为的中点,所以
因为为正三角形,所以
因为的中点,所以
以下给出两种求的方法:
方法1:在△中,过点的垂线,垂足为点
. 因为
所以.
方法2:在中,.         ①,
中,因为
所以
.                         ②,
由①,②解得.故点到平面的距离为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,且满足.

(1)求证:
(2)求点的距离;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:
①若,,则;②若,,且,则;③若,,则; ④若,,且,则.其中正确命题的序号是(    )
A.①④ B.②③ C.②④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是异面直线,直线∥直线,那么(  )
A.一定是异面直线B.一定是相交直线
C.不可能是平行直线D.不可能是相交直线

查看答案和解析>>

同步练习册答案