分析 (1)利用互斥事件概率加法公式能求出选出的3名代表中,专家比普通教师多一人的概率.
(2)由题意ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列和Eξ.
解答 解:(1)∵座谈会共邀请了50名代表参加,他们分别是专家20人,普通教师15人,学生15人,现从50名代表中随机选出3名做典型发言,
∴选出的3名代表中,专家比普通教师多一人的概率:
$P=\frac{{C_{20}^1C_{15}^0C_{15}^2}}{{C_{50}^3}}+\frac{{C_{20}^2C_{15}^1C_{15}^0}}{{C_{50}^3}}=\frac{3}{28}+\frac{57}{392}=\frac{99}{392}$.(4分)
(2)由题意ξ的可能取值为0,1,2,3,(5分)
又$P(ξ=0)=\frac{{C_{30}^3}}{{C_{50}^3}}=\frac{29}{140}$,
$P(ξ=1)=\frac{{C_{20}^1C_{30}^2}}{{C_{50}^3}}=\frac{87}{196}$,
$P(ξ=2)=\frac{{C_{20}^2C_{30}^1}}{{C_{50}^3}}=\frac{57}{196}$,
$P(ξ=3)=\frac{{C_{20}^3}}{{C_{50}^3}}=\frac{57}{980}$,(9分)
∴随机变量ξ的分布列是
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{29}{140}$ | $\frac{87}{196}$ | $\frac{57}{196}$ | $\frac{57}{980}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5$\sqrt{3}$ | B. | 30$\sqrt{3}$ | C. | $\frac{{10\sqrt{3}}}{3}$ | D. | 10$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com