精英家教网 > 高中数学 > 题目详情
20.若f(x)是定义在(0,+∞)上的增函数,且f($\frac{x}{y}$)=f(x)-f(y).
(Ⅰ)求f(1)的值;
(Ⅱ)解不等式:f(x-1)<0.

分析 (Ⅰ)在等式中令x=y≠0,则f(1)=0,问题得以解决,
(Ⅱ)由f(1)=0和f(x)是定义在(0,+∞)上的增函数,得到关于x的不等式组解得即可.

解答 解:(Ⅰ)在等式中令x=y>0,则f(1)=0,
(Ⅱ)∵f(1)=0,
∴f(x-1)<0?f(x-1)<f(1)
又f(x)是定义在(0,+∞)上的增函数,
∴$\left\{{\begin{array}{l}{x-1<1}\\{x-1>0}\end{array}}\right.$
∴1<x<2,
则原不等式的解集为(1,2).

点评 本题考查抽象函数的问题,关键是赋值,以及函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,则H为△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+1=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.3+2$\sqrt{2}$B.9C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在长方体ABCD-A1B1C1D1中,AA1=AD=4,E是棱CD上的一点.
(1)求证:AD1⊥平面A1B1D;
(2)求证:B1E⊥AD1
(3)若E是棱CD的中点,在棱AA1上是否存在点P,使得DP∥平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||x-2|<3,x∈Z},B={0,1,2},则集合A∩B=(  )
A.{0,1,2}B.{0,1,2,3}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,则异面直线A1B、EC的夹角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在三棱锥P-ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=x2+bx+c在[0,+∞)上是单调函数的充分条件是(  )
A.b>1B.b<-1C.b<0D.b>-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在四面体A-BCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,二面角A-BD-C为直二面角,E是CD的中点,则∠AED的度数为90°.

查看答案和解析>>

同步练习册答案