(本小题14分) 已知函数,若
(1)求曲线在点处的切线方程;
(2)若函数在区间上有两个零点,求实数b的取值范围;
(3)当
(1);(2)(1,] ;(3)证明详见解析.
解析试题分析:(1)先求导数,再求切线的斜率,由点斜式可得切线方程;(2)先求 ,然后确定函数
g(x)的单调区间,找到满足函数在区间上有两个零点d的条件,解之即可;(3)欲证原不等式可转化为证,在构造函数,由函数h(x)的单调性可证的<0,即可得证.
试题解析:(1)因为,
所以曲线在点处的切线方程为
(2)=,(x>0)
=,由>0得x>1, 由<0得0<x<1.
所以的单调递增区间是(1,+),单调递减区间(0, 1)
x=1时,取得极小值.
因为函数在区间 上有两个零点,所以 ,解得,
所以b的取值范围是(1,
(3)当
即证:
即证:
构造函数:
当时,
所以,
又,所以
即
所以
考点:1.导数的几何意义;2.函数的零点;3.导数的应用.
科目:高中数学 来源: 题型:解答题
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。
(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x-ax+(a-1),.
(1)讨论函数的单调性;(2)若,设,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com