精英家教网 > 高中数学 > 题目详情

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上.

该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示:

4

10

16

22

(万股)

36

30

24

18

(1)根据提供的图象,写出该股票每股交易价格(元)与时间(天)所满足的函数关系式;

(2)根据表中数据,写出日交易量(万股)与时间(天)的一次函数关系式;

(3)用(万元)表示该股票日交易额,写出关于的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?

【答案】见解析

【解析】1)当,,

由图象可知,此函数的图象过点,,解得,

.2分)

同理,可求得当,.

.4分)

2)设,把所给表中任意两组数据代入可求得,

,,.7分)

3)因为日交易额(万元)=日交易量(万股)每股交易价格(),

.9分)

,,万元;

,

故在30天中的第15天日交易额最大,为125万元.12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线 ,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 .

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,求的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A{x|(x3)(xa)<0a∈R},集合B{xZ|x23x4<0}

(1)AB的子集个数为4,求a的范围;

(2)aZ,当AB时,求a的最小值,并求当a取最小值时AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

)求椭圆的标准方程;

)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)写出的解析式与定义域

2)画出函数的图像;

3)试讨论方程的根的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率利润保费收入)的频率分布直方图如图所示:

(1)试估计这款保险产品的收益率的平均值;

(2)设每份保单的保费在20元的基础上每增加元,对应的销量为(万份).从历史销售记录中抽样得到如下5组的对应数据:

25

30

38

45

52

销量为(万份)

7.5

7.1

6.0

5.6

4.8

由上表,知有较强的线性相关关系,且据此计算出的回归方程为

(ⅰ)求参数的值;

(ⅱ)若把回归方程当作的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入每份保单的保费销量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份

2011

2012

2013

2014

2015

储蓄存款(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号

1

2

3

4

5

0

1

2

3

5

)求关于的线性回归方程;

)通过()中的方程,求出关于的回归方程;

)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线处的切线互相平行,求的值;

(2)求的单调区间;

(3),若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

同步练习册答案