精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

)求椭圆的标准方程;

)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

【答案】(I;(II存在定点,定值为.

【解析】

试题分析:(I利用原点到直线的距离为列方程,联立解方程组,求得,椭圆方程为II)先假设定点为.联立直线点的方程和椭圆方程,斜率关于坐标的韦达定理,将此代入题设为定值,由此求得,代回原式求得定值为.

试题解析:

(1)由,即

又以原点为圆心,椭圆的长轴长为半径的圆为

且与直线相切,

所以代入

所以.所以椭圆的标准方程为

(2)由

,所以

根据题意,假设轴上存在定点

使得为定值.

要使上式为定值,即与无关,

此时,,所以在轴上存在定点,使得为定值,且定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=sin2x+acosx+a-在闭区间[0,]上的最大值是1?若存在,则求出对应的a的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若的图象在处的切线恰好也是图象的切线.

①求实数的值;

②若方程在区间内有唯一实数解,求实数的取值范围.

(2)当时,求证:对于区间上的任意两个不相等的实数 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题13)已知函数f(x) (a>0x>0)

(1)求证:f(x)(0,+∞)上是单调递增函数;

(2)f(x)[2]上的值域是[2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)

(2)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上.

该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示:

4

10

16

22

(万股)

36

30

24

18

(1)根据提供的图象,写出该股票每股交易价格(元)与时间(天)所满足的函数关系式;

(2)根据表中数据,写出日交易量(万股)与时间(天)的一次函数关系式;

(3)用(万元)表示该股票日交易额,写出关于的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通项公式;

(2)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若曲线在点处的切线的斜率为5,求的值;

(2)若函数的最小值为,求的值;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案