精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,设F(x)=f(x+4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则圆x2+y2=b-a的面积的最小值是
 
分析:利用导数判断函数f(x)单调性,再利用函数零点的判定定理判断函数是否存在零点零点,利用平移变换找出F(x)与f(x)的零点之间的关系即可.
解答:解:∵f(x)=1-x+x2+…+x2012,①x=0时,f(0)=1>0;②当x=-1时,f(-1)=2013>0;
③当x≠0,-1时,f(x)=
1-(-x)2013
1-(-x)
=
1+x2013
1+x
,无论x>-1,还是x<-1,都有f(x)>0.
综上可知:对?x∈R,都有f(x)>0.∴函数f(x)单调递增,也就是说,函数f(x)至多有一个零点.
另一方面:f(0)=1>0,f(-1)═0-
1
2
-
1
3
-…-
1
2013
<0,∴f(0)f(-1)<0,
由函数零点的判定定理可知:函数f(x)的零点x0∈(-1,0).
综上可知:函数f(x)有且只有一个零点x0∈(-1,0).
又F(x)=f(x+4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,∴函数F(x)的零点x0必在区间(-5,-4)内.
又(-5,-4)?[a,b],(a<b,a,b∈Z),∴b-a的最小值为1.
∴圆x2+y2=b-a的面积的最小值是π×12=π.
故答案为π.
点评:熟练掌握导数研究函数的单调性、函数零点的判定定理及平移变换是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案