精英家教网 > 高中数学 > 题目详情
10.如图所示,正方体ABCD-A1B1C1D1的棱长为a,点P是棱AD上一点,且AP=$\frac{a}{3}$,过点B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=$\frac{\sqrt{2}a}{3}$.

分析 作出PQ,然后求解距离即可.

解答 解:连结BD,过P作PQ∥BD交AB于Q,
因为正方体ABCD-A1B1C1D1的棱长为a,点P是棱AD上一点,且AP=$\frac{a}{3}$,
所以AQ=$\frac{a}{3}$,
则PQ=$\frac{\sqrt{2}a}{3}$.
故答案为:$\frac{\sqrt{2}a}{3}$.

点评 本题考查直线与平面平行的判定定理以及性质定理的应用,考查计算能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设集合A={x|x2-2x≤0},B={x|-4≤x≤0},则A∩∁RB=(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧棱长为$\frac{\sqrt{2}}{2}$a,点D在棱A1C1上.
(1)若A1D=DC1,求证:直线BC1∥平面AB1D;
(2)是否存在D,使平面AB1D⊥平面ABB1A1?若存在,请确定D的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.四条直线相互平行的直线最多可确定的平面个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在三棱锥A-BCD中,AC=BD=3,AD=BC=4,AB=CD=m,则m的取值范围是(  )
A.(1,5)B.(1,7)C.($\sqrt{7}$,7)D.($\sqrt{7}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若a、b、x、y∈R+,且a+b=1,证明:ax2+by2≥(ax+by)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果y是x的函数,x=$\sqrt{t+1}$,y=$\sqrt{t-1}$,其中t>1,则y与x的函数表达式为(  )
A.y=$\sqrt{{x}^{2}-2}$ (x>2)B.y=$\sqrt{x-2}$(x>2)C.y=$\sqrt{{x}^{2}-2}$ (x>$\sqrt{2}$)D.y=$\sqrt{x-2}$(x>$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数是(  )
①总体个数较少,抽取样本较少时宜采用简单的随即抽样;
②总体各层次差异较大时宜采用分层抽样;
③某工厂在其生产流水线上每隔10取一件产品检验,这种抽样方法叫分层抽样.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件,确定α是第几象限的角:
(1)sinα与cosα异号;    
(2)$\frac{tanα}{cosα}$>0.

查看答案和解析>>

同步练习册答案