分析 利用向量$\overrightarrow a$=(mx,y+1),向量$\overrightarrow b=(x,y-1)$,$\overrightarrow a$⊥$\overrightarrow b$,可得mx2+(y+1)(y-1)=0,即可求出轨迹E的方程.
解答 解:∵向量$\overrightarrow a$=(mx,y+1),向量$\overrightarrow b=(x,y-1)$,$\overrightarrow a$⊥$\overrightarrow b$,
∴mx2+(y+1)(y-1)=0
∴mx2+y2=1,
故答案为mx2+y2=1.
点评 本题考查轨迹方程,考查向量知识的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ${(-1)^{n-1}}\frac{1}{2n}$ | B. | ${(-1)^{n-1}}\frac{1}{2^n}$ | C. | ${(-1)^n}\frac{1}{2n}$ | D. | ${(-1)^n}\frac{1}{2^n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B=R | B. | A∪(∁∪B)=R | C. | (∁∪A)∪B=R | D. | A∩(∁∪B)=A |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)的图象关于$x=\frac{π}{2}$对称 | B. | y=f(x)的图象关于$({\frac{π}{2},0})$对称 | ||
| C. | y=f(x)的图象关于y轴对称 | D. | y=f(x)不是周期函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com