精英家教网 > 高中数学 > 题目详情
已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.
(1)当k>0时,的单调递增区间是()和;单调减区间是;
当k<0时,的单调递减区间是()和;单调增区间是
(2)

试题分析:(1)由题意可得
,得.
当k>0时,的情况如下
x
()

(,k)
k


+
0

0
+




0

所以,的单调递增区间是()和;单调减区间是;
当k<0时,的情况如下
x
()
k
(k,)




0
+
0



0



所以,的单调递减区间是()和;单调增区间是
(2)当k>0时,因为,所以不会有
当k<0时,由(Ⅰ)知在(0,+)上的最大值是
所以等价于
解得.
故当时,k的取值范围是
点评:导数是研究函数性质的有力工具,研究函数时,首先要看函数的定义域,求单调区间、极值、最值时,往往离不开分类讨论,主要考查学生的分类讨论思想的应用和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数,且.
(1)求的值;
(2)若令,求取值范围;
(3)将表示成以)为自变量的函数,并由此,求函数的最大值与最小值及与之对应的x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间上为单调函数,则实数不可能取到的值为
A.B.C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数
(Ⅰ)若,求函数的极值点;
(Ⅱ)若不等式恒成立,求的取值范围.
为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)时,求的最小值;
(2)若上是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间为______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=2x4 -x2+1的递减区间是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在(0,+)上的非负可导函数,且满足。对任意正数a、b,若a<b,则必有(   )
A.af(b)≤bf(a)B.bf(a)≤af(b)
C.af(a)≤f(b)D. bf(b)≤f(a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案