精英家教网 > 高中数学 > 题目详情
设函数,且.
(1)求的值;
(2)若令,求取值范围;
(3)将表示成以)为自变量的函数,并由此,求函数的最大值与最小值及与之对应的x的值.
(1)6(2)(3)

试题分析:解:(1).f(3)=          3分
(2).由,又    ..6分
(3).由 .8分
          .9分
1).当t=时,,即.
,此时             ..11分
2).当t=2时,,即.
,此时               13分
点评:解决的关键是通过已知的函数的解析式来转化为二次函数来求解最值,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间
(2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4—5:不等式选讲
设函数=
(I)求函数的最小值m;
(II)若不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是定义在R上的奇函数和偶函数,当时,,且,则的解集是( )  
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求在点处的切线方程;
(2)求在区间的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中实数,是自然对数的底数).
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)求在区间上的最小值;
(Ⅲ) 若存在,使方程成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,问是否存在实数使上取最大值3,最小值-29,若存在,求出的值;不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间为_______________.

查看答案和解析>>

同步练习册答案