精英家教网 > 高中数学 > 题目详情
选修4—5:不等式选讲
设函数=
(I)求函数的最小值m;
(II)若不等式恒成立,求实数a的取值范围.
(I)  (II) 

试题分析:(Ⅰ)
显然,函数在区间上单调递减,在区间上单调递增,
所以函数的最小值               
(Ⅱ)由(Ⅰ)知恒成立,
由于
等号当且仅当时成立,故,解之得
所以实数的取值范围为         
点评:利用绝对值的性质化简函数,是求函数最值得关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数,且.
(1)求的值;
(2)若令,求取值范围;
(3)将表示成以)为自变量的函数,并由此,求函数的最大值与最小值及与之对应的x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过点,且点处的切线方程为在
(1)求函数的解析式;            (2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间上的最小值为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若2x-3x≥2y-3y,则
A.x-y≥0B.x-y≤0C.x+y≥0D.x+y≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,给定区间E,对任意,当时,总有则下列区间可作为E的是(  )
A.(-3,-1)B.(-1,0)C.(1,2)D.(3,6)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数
(Ⅰ)若,求函数的极值点;
(Ⅱ)若不等式恒成立,求的取值范围.
为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知,求证:;
(2)已知>0(i=1,2,3,…,3n),求证:
+++…+

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间是
A.B.C.D.

查看答案和解析>>

同步练习册答案