【题目】已知椭圆的一个顶点为,焦点在轴上,离心率为.
(1)求椭圆的方程;
(2)若椭圆与直线相交于不同的两点,当时,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是以O为中心的菱形,底面ABCD,,,M为BC上一点.
当BM等于多少时,平面POM?
在满足的条件下,若,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图. (Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组欲研究昼夜温差大小与患感冒人数之间的关系,统计得到1至6月份每月9号的昼夜温差与因患感冒而就诊的人数的数据,如下表:
日期 | 1月9号 | 2月9号 | 3月9号 | 4月9号 | 5月9号 | 6月9号 |
10 | 11 | 13 | 12 | 8 | 6 | |
22 | 25 | 29 | 26 | 16 | 12 |
该研究小组的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求回归方程,再用之前被选取的2组数据进行检验.
(1)若选取1月和6月的数据作为检验数据,请根据剩下的2至5月的数据,求出关于的线性回归方程;(计算结果保留最简分数)
(2)若用(1)中所求的回归方程作预报,得到的估计数据与所选出的检验数据的误差不超过2人,则认为得到的回归方程是理想的,试问该研究小组所得回归方程是否理想?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合: ①M={(x,y)|y= };
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x﹣2};
④M={(x,y)|y=log2x}
其中是“垂直对点集”的序号是( )
A.②③④
B.①②④
C.①③④
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为6,离心率为 ,F2为椭圆的右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是 ,函数f'(x)的图象的一个对称中心是 ,则f(x)的最小正周期是( )
A.
B.
C.π
D.2π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题时百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.
(1)求出频率分布直方图中的a值,并求出这200的平均年龄;
(2)现在要从年龄较小的第1,2,3组用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有1人的年龄在第3组的概率;
(3)若要从所有参与调查的人(人数很多)中随机选出3人,记关注民生问题的人数为X,求X的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com