分析 由(¬p)∧q是真命题,得:p假且q真;分别求出命题p,q为真假是参数a的范围,可得答案.
解答 解:若p真,则$\left\{\begin{array}{l}△>0\\ 0<a<1\\ f(0)≥0\\ f(1)≥0\end{array}\right.$,即$\left\{\begin{array}{l}{a}^{2}+2a-1>0\\ 0<a<1\\ 1-2a≥0\\ 2-4a≥0\end{array}\right.$
∴$\sqrt{2}-1$<a≤$\frac{1}{2}$.
若q真,g(x)=|x-a|-ax=$\left\{\begin{array}{l}(1-a)x-a,x≥a\\-(1+a)x+a,x<a\end{array}\right.$,
∵a>0,
∴-(1+a)<0,
即g(x)在(-∞,a)单调递减的,要使g(x)有最小值,则g(x)在[a,+∞)增或为常数,
即1-a≥0,
∴0<a≤1,
若(¬p)∧q是真命题,则p为假命题且q为真命题,
∴$\left\{\begin{array}{l}0<a≤\sqrt{2}-1,或a>\frac{1}{2}\\ 0<a≤1\end{array}\right.$
解得:a∈(0,$\sqrt{2}-1$]∪($\frac{1}{2}$,1].
点评 本题以命题的真假判断与应用为载体,考查了复合命题,函数的零点,函数的最值等知识点,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{15}}{15}$ | B. | $\frac{\sqrt{15}}{15}$ | C. | $\frac{2\sqrt{15}}{15}$ | D. | $\frac{\sqrt{15}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {(0,1),(1,2)} | B. | {0,1} | C. | (0,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com