精英家教网 > 高中数学 > 题目详情
14.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为(  )
A.x2-y2=1B.x2-$\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.x2-$\frac{{y}^{2}}{4}$=1

分析 设点P是双曲线右支上一点,按双曲线的定义,|PF1|-|PF2|=2a,设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),B、C分别为内切圆与PF1、PF2的切点.由同一点向圆引得两条切线相等知|PF1|-|PF2|=(PB+BF1)-(PC+CF2),由此得到△PF1F2的内切圆的圆心横坐标.即为a=1,再由直线的斜率公式和点P满足双曲线方程,化简整理,即可得到b=1,进而得到双曲线方程.

解答 解:设点P是双曲线右支上一点,
∴按双曲线的定义,|PF1|-|PF2|=2a,
若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.
设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引的两条切线相等:
则有:PF1-PF2=(PB+BF1)-(PC+CF2)=BF1-CF2=AF1-F2A
=(c+x)-(c-x)=2x=2a,即x=a
所以内切圆的圆心横坐标为a.
由题意可得a=1,
顶点A1(-1,0),A2(1,0),
设P(m,n),则m2-$\frac{{n}^{2}}{{b}^{2}}$=1,即n2=b2(m2-1),
k1k2=1,可得$\frac{n}{m+1}•\frac{n}{m-1}$=1,
即有$\frac{{n}^{2}}{{m}^{2}-1}$=b2=1,
即有双曲线的方程为x2-y2=1.
故选:A.

点评 本题考查双曲线的定义、方程和性质,主要考查定义法的运用,以及直线的斜率公式的运用,切线的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a∈{-1,1,$\frac{1}{3}$,$\frac{2}{3}$},则使函数y=xa的定义域为R且为奇函数的所有a的值为(  )
A.$-1,\frac{1}{3}$B.$1,\frac{2}{3}$C.$1,\frac{1}{3}$D.$1,\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在R上的偶函数y=f(x)满足f(x)=f(1-x),当$x∈[{0,\frac{1}{2}}]$时,f(x)=-4x2+4x,则函数g(x)=f(x)-ln(x+1)的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,F2为其右焦点,A1为其左顶点,点B(0,b)在以A1F2为直径的圆上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{5}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=-$\frac{1}{2}$x2+bln(x+2)在区间[-1,2]不单调,则b的取值范围是(  )
A.(-∞,-1]B.[8,+∞)C.(-∞,-1]∪[8,+∞)D.(-1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为“互为镜像方程对”.给出下列四对方程:
①y=sinx和y=sin2x;②$y={(\frac{1}{2})^x}$和y=2x;③y2=4x和x2=4y;④y=1+lnx和y=1-lnx
其中是“互为镜像方程对”的有(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数$f(x)=\left\{\begin{array}{l}2{e^{x+1}}({x<2})\\{log_3}\frac{1}{{{x^2}-1}}({x≥2})\end{array}\right.$,则f[f(2)]=(  )
A.$\frac{2}{e}$B.2e2C.2eD.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的度数为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设非零常数d是等差数列x1,x2,x3,…,x9的公差,随机变量ξ等可能地取值x1,x2,x3,…,x9,则方差Dξ=(  )
A.$\frac{10}{3}$d2B.$\frac{20}{3}$d2C.10d2D.6d2

查看答案和解析>>

同步练习册答案