【题目】已知椭圆
的短轴长为2,离心率
,
(1)求椭圆
方程;
(2)若直线
与椭圆交于不同的两点
,与圆
相切于点
,
①证明:
(其中
为坐标原点);
②设
,求实数
的取值范围..
科目:高中数学 来源: 题型:
【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为
,若将军从点
处出发,河岸线所在直线方程为
,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ).
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月1日是新中国的第70个国庆日,庄重的阅兵、欢乐的游行、热烈的联欢尽显祖国的繁荣昌盛.为了了解当天某校900名高三学生的观看情况,从中抽取了100名学生,情况如下表所示:
观看情况 | 电视观看 | 网络观看 | 没有观看 |
人数 | 35 | 60 | 5 |
新时代下,网络观看使用最多的是手机,其它还有电脑、ipad等.“是否使用手机观看”与“学生的性别”之间对应的列联表如下:
使用手机观看 | 其它方式观看 | 合计 | |
男学生 | 20 | 8 | 28 |
女学生 | 20 | 12 | 32 |
合计 | 40 | 20 | 60 |
(1)估计该校高三学生当天的观看人数.
(2)当天没有观看的5名学生中,有3人第二天观看了重播.从这5名学生中任选2人求这2人第二天都看了重播的概率;
(3)根据列联表判断,能否有95%的把握认为网络观看的学生中“是否使用手机观看”与“学生的性别”有关?
附:
,其中
.
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
九章算术
是我国古代著名数学经典
其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小
以锯锯之,深一寸,锯道长一尺
问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺
问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示
阴影部分为镶嵌在墙体内的部分
已知弦
尺,弓形高
寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈
尺
寸,
,
)
![]()
A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年暑假期间,河南有一新开发的景区在各大媒体循环播放广告,观众甲首次看到该景区的广告后,不来此景区的概率为
,从第二次看到广告起,若前一次不来此景区,则这次来此景区的概率是
,若前一次来此景区,则这次来此景区的概率是
.记观众甲第n次看到广告后不来此景区的概率为
,若当
时,
恒成立,则M的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
,点
是
上的定点,
、
是
上的两个动点,且线段
的中点
在线段
上.
![]()
(1)抛物线
的方程及
的值;
(2)当点
、
分别在第一、四象限时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列
首项和公差都是
,记
的前n项和为
,等比数列
各项均为正数,公比为q,记
的前n项和为
:
(1)写出![]()
构成的集合A;
(2)若将
中的整数项按从小到大的顺序构成数列
,求
的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得![]()
同时为(1)中集合A的元素?若存在,写出所有符合条件的
的通项公式,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com