分析 设切点为(x0,x0lnx0),对y=xlnx求导数得y′=lnx+1,从而得到切线的斜率k=lnx0+1,结合直线方程的点斜式化简得切线方程为y=(lnx0+1)x-x0,对照已知直线列出关于x0、m的方程组,解之即可得到实数m的值.
解答 解:设切点为(x0,x0lnx0),
对y=xlnx求导数,得y′=lnx+1,
∴切线的斜率k=lnx0+1,
故切线方程为y-x0lnx0=(lnx0+1)(x-x0),
整理得y=(lnx0+1)x-x0,
与y=2x+b比较得lnx0+1=2且-x0=b,
解得x0=e,故b=-e.
故b的值为:-e.
点评 本题考查导数的几何意义,切线方程的求法,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 高一 | 高二 | 总计 | |
| 合格人数 | 70 | x | 150 |
| 不合格人数 | y | 20 | 50 |
| 总计 | 100 | 100 | 200 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30o | B. | 60o | C. | 120o | D. | 150o |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com