精英家教网 > 高中数学 > 题目详情
8.在△ABC中,A=30°,则$\sqrt{3}sinA-cos({B+C})$的值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

分析 由三角形内角和定理,诱导公式化简即可计算得解.

解答 解:∵A=30°,A+B+C=π,
∴$\sqrt{3}sinA-cos({B+C})$=$\sqrt{3}$sinA-cos(π-A)=$\sqrt{3}$sinA+cosA=$\sqrt{3}×\frac{1}{2}+\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故选:B.

点评 本题主要考查了三角形内角和定理,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{16}$没有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是等差数列,{bn}是等比数列,Sn为数列{an}的前n项和,a1=b1=1,且b3S3=36,b2S2=8.
(1)求数列{an}和{bn}通项公式;
(2)若an<an+1,求数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=2x+b是曲线y=xlnx(x>0)的一条切线,则实数b为-e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设Ρ是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的点.若F1、F2是椭圆的两个焦点,则|PF1|+|PF2|=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC是边长为2的等边三角形,$A\vec B•A\vec C$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=ax3-x存在单调递增区间,则实数a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆x2+4y2=1的长轴长为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的方程是y=$\frac{\sqrt{3}}{2}$x,且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{21}-\frac{{y}^{2}}{28}$=1B.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{28}-\frac{{y}^{2}}{21}$=1D.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案