精英家教网 > 高中数学 > 题目详情
18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的方程是y=$\frac{\sqrt{3}}{2}$x,且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{21}-\frac{{y}^{2}}{28}$=1B.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{28}-\frac{{y}^{2}}{21}$=1D.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{4}$=1

分析 由双曲线的渐近线方程,求得4b2=3a2,由抛物线的性质求得双曲线的焦点坐标,即可求得a和

解答 解:由双曲线的方程y=±$\frac{b}{a}$x,则$\frac{b}{a}$=$\frac{\sqrt{3}}{2}$,4b2=3a2,①
由抛物线y2=4$\sqrt{7}$x的准线方程x=-$\sqrt{7}$,则焦点(-$\sqrt{7}$,0),则c=$\sqrt{7}$,
由a2+b2=c2=7,②
由①②解得:a2=4,b2=3,
∴双曲线的标准方程:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$,
故选B.

点评 本题考查双曲线的简单性质,抛物线的准线方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,A=30°,则$\sqrt{3}sinA-cos({B+C})$的值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A={x|x2-2x-3<0},B={x|x2-5x+6<0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求x2+ax-b<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某几何体的三视图如图所示,俯视图是正方形,正视图和侧视图都是底面边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.现有四个推理:
①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
②由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为等比数列,则有$\root{5}{{b}_{6}{b}_{7}…{b}_{10}}$=$\root{15}{{b}_{1}{b}_{2}…{b}_{15}}$成立”;
③由实数运算中,(a•b)•c=a•(b•c),可以类比得到在向量中,($\overrightarrow{a}•\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}•\overrightarrow{c}$),
④在实数范围内“5-3=2>0⇒5>3”,类比在复数范围内,“5+2i-(3+2i)=2>0⇒5+2i>3+2i”;
则得出的结论正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若AB=$\sqrt{13}$,BC=3,∠C=60°,则AC=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.四名学生报名参加五项体育比赛.每人限报一项,不同的报名方法有       种(  )
A.45B.54C.120D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是以F1,F2为焦点的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$上一点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0,tan∠P{F_1}{F_2}=\frac{1}{3}$,则椭圆的离心率是(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{10}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?
(2)由1,2,3,4四个数字共能组成多少个没有重复数字的四位数?

查看答案和解析>>

同步练习册答案