精英家教网 > 高中数学 > 题目详情
10.四名学生报名参加五项体育比赛.每人限报一项,不同的报名方法有       种(  )
A.45B.54C.120D.20

分析 根据题意,分析可得每名学生有5种报名方法,由分步计数原理计算可得答案.

解答 解:根据题意,四名学生报名参加五项体育比赛.每人限报一项,
每名学生有5种报名方法,
则四名学生一共有5×5×5×5=54种报名方法;
故选:B.

点评 本题考查分步计数原理的应用,注意五项体育比赛没有要求每项都有人报名.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=ax3-x存在单调递增区间,则实数a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若四面体P-ABC 的体积为$\frac{3}{2}$,求球的表面积(  )
A.B.12πC.8$\sqrt{3}$πD.12$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的方程是y=$\frac{\sqrt{3}}{2}$x,且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{21}-\frac{{y}^{2}}{28}$=1B.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{28}-\frac{{y}^{2}}{21}$=1D.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△abc中,三边之比a:b:c=2:3:4,则$\frac{sinA-2sinB}{sinC}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如上图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①1是函数y=f(x)的最小值点;
②-2是函数y=f(x)的极值点
③y=f(x)在区间(-2,2)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
则正确命题的序号是(  )
A.①④B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx+m}{{e}^{x}}$,曲线y=f(x)在点(1,f(1))处的切线与x轴平行
(1)函数f(x)是否存在极值?若存在,请求出,若不存在,请说明理由.
(2)已知g(x)=$\frac{{e}^{2x-1}}{x+1}$,求证:当x>0时,g(x)>1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:sin187°cos52°+cos7°sin52°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\frac{1}{3}$x3-ax2+3bx-2的导函数为f′(x),若f′(x)满足f′(x+2)=f′(2-x),且f(x)≥-2在[1,3]上恒成立,则实数b的取值范围为[7,+∞).

查看答案和解析>>

同步练习册答案