精英家教网 > 高中数学 > 题目详情
若f(cosx)=tan2x,则f(sin15°)等于(  )
分析:利用诱导公式可知sin15°=cos75°,代入已知,利用特殊角的正切即可求得答案.
解答:解:∵f(cosx)=tan2x,
∴f(sin15°)=f(cos75°)=tan150°=-
3
3

故选A.
点评:本题考查诱导公式的应用,考查对关系式的理解与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,
AB
=(-
3
sinx,sinx),
AC
=(sinx,cosx)

(1)设f(x)=
AB
AC
,若f(A)=0,求角A的值;
(2)若对任意的实数t,恒有|
AB
-t
AC
|≥|
BC
|
,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•青岛一模)已知向量
m
=(
3
sin2x+t,cosx)
n
=(1,2cosx)
,设函数f(x)=
m
n

(Ⅰ)若cos(2x-
π
3
)=
1
2
,且
m
n
,求实数t的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=3,b=1,且△ABC的面积为
3
2
,实数t=1,求边长a的值.

查看答案和解析>>

科目:高中数学 来源:北京期末题 题型:解答题

已知函数f(x)的图象在[a,b]上连续不断,定义:
f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),
其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值。若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,6]上的“k阶收缩函数”。 (Ⅰ)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(Ⅱ)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(Ⅲ)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

同步练习册答案