精英家教网 > 高中数学 > 题目详情
8.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.36πB.30πC.29πD.20π

分析 由已知三视图得到几何体是平放的三棱柱,底面为直角三角形,高为4,由此计算外接球的表面积.

解答 解:由已知三视图得到几何体是平放的三棱柱,底面为直角边分别为2,3的直角三角形,棱柱的高为4,所以外接球的直径为$\sqrt{{2}^{2}+{3}^{2}+{4}^{2}}=\sqrt{29}$,所以表面积为:$4π×(\frac{\sqrt{29}}{2})^{2}=29π$;
故选C.

点评 本题考查了三棱柱的三视图以及外接球表面积的求法;关键是还原几何体为三棱柱并且明确其外接球的直径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.与角-$\frac{π}{3}$终边相同的角是(  )
A.$\frac{5π}{3}$B.$\frac{11π}{6}$C.-$\frac{5π}{6}$D.-$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)的导函数f′(x)=3sinx,则一定有(  )
A.f(0)=0B.f(0)>f(1)C.f(0)=-3D.f(-1)>f($\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是R上的偶函数,它在[0,+∞)上是减函数,若f(lnx)>f(1),则x的取值范围是(  )
A.(e-1,1)B.(0,e-1)∪(1,+∞)C.(0,1)∪(e,+∞)D.(e-1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={y|y=-x2+2x+3,x∈R},B={y|y=5x2-10x+3,x∈R},则A∩B={y|-2≤y≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,一个组合体的三视图如图:(单位cm)
(1)说出该几何体的结构特征;
(2)求该组合体的体积(保留π);
(3)求该组合体的全面积.(保留π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某同学用收集到的6组数据时(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并计算得到回归直线l1的方程:$\widehat{y}$=$\widehat{{b}_{1}}$x+$\widehat{{a}_{1}}$,相关指数为R${\;}_{1}^{2}$;经过残差分析确定B为离群点,把它去掉后,再用剩下的5组数据计算得到回归直线l2的方程为:$\widehat{y}$=$\widehat{{b}_{2}}$x+$\widehat{{a}_{2}}$,相关指数为R${\;}_{2}^{2}$,则以下结论中,不正确的是(  )
A.$\widehat{{b}_{1}}$>0B.R${\;}_{2}^{2}$>R${\;}_{1}^{2}$C.直线l1恰好过点CD.$\widehat{{b}_{2}}$<$\widehat{{b}_{1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列命题:
①存在实数x,使$sinx+cosx=\frac{3}{2}$;
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数$y=\frac{{{{sin}^2}x-sinx}}{sinx-1}$是奇函数;
④函数$y=|sinx-\frac{1}{2}|$的周期是π;
⑤函数y=ln|x-1|的图象与函数y=-2cos(πx)(-2≤x≤4)的图象所有交点的横坐标之和等于6.
其中正确命题的序号是⑤(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:选择题

如图是一个程序框图,则输出的的值是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案