精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)是R上的偶函数,它在[0,+∞)上是减函数,若f(lnx)>f(1),则x的取值范围是(  )
A.(e-1,1)B.(0,e-1)∪(1,+∞)C.(0,1)∪(e,+∞)D.(e-1,e)

分析 根据题意,结合函数的奇偶性与单调性分析可得f(lnx)>f(1)⇒|lnx|<1,解可得x的取值范围,即可得答案.

解答 解:根据题意,函数f(x)是R上的偶函数,则f(lnx)=f(|lnx|),
又由在[0,+∞)上是减函数,
则f(lnx)>f(1)⇒|lnx|<1,
解可得e-1<x<e,
即x的取值范围是(e-1,e);
故选:D.

点评 本题考查函数奇偶性与单调性的综合应用,关键是得到关于x的不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(4,-2),若$\overrightarrow{a}$$⊥\overrightarrow{b}$,则m=(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,输出的结果为(  )
A.57B.42C.26D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=f(x-1)的定义域是(-1,3),则函数y=f(2x+1)的定义域为(  )
A.(-1,7)B.$(-\frac{3}{2},\frac{1}{2})$C.(0,4)D.(0,9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在[-2,2]上的奇函数,当x∈(0,2]时,f(x)=x2-3x+4,函数y=f(x)的值域是(  )
A.(-4,4)B.$(-2,-\frac{7}{4}]∪\left.{\left\{0\right.}\right\}∪[\frac{7}{4},2)$C.$(-4,-\frac{7}{4}]∪\left.{\left\{0\right.}\right\}∪[\frac{7}{4},4)$D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆O1:x2+y2-2x+2y+1=0,圆O2:x2+y2-2x+6y+5+r2=0(r>0)相外切,则实数r的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.36πB.30πC.29πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列程序框图输出的a的值为-1.

查看答案和解析>>

科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:解答题

中,角所对的边分别为,且.

(1)若,求

(2)若,且的面积为,求的周长.

查看答案和解析>>

同步练习册答案