精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式若f(1)+f(a)=2,则a的所有可能值为


  1. A.
    1
  2. B.
    -数学公式
  3. C.
    1,-数学公式
  4. D.
    1,数学公式
C
分析:由分段函数的解析式容易得出,f(1)=e1-1=1,∴f(a)=1,然后在每一段上求函数的值为1时对应的a的值即可.
解答:由题意知,当-1<x<0时,f(x)=sin(πx2);
当x≥0时,f(x)=ex-1
∴f(1)=e1-1=1.
若f(1)+f(a)=2,则f(a)=1;
当a≥0时,ea-1=1,∴a=1;
当-1<a<0时,sin(πx2)=1,
,x=(不满足条件,舍去),或x=
所以a的所有可能值为:1,
故答案为:C
点评:本题考查分段函数中由函数值求对应的自变量的值的问题,需要在每一段上讨论函数的解析式,然后求出对应的自变量的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)

②计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若f(x0)=x0,则称x0为f(x)的:“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的有
②④
②④

①对于定义在R上的函数f(x),若f(-2)=f(2),则函数f(x)不是奇函数;
②对于定义在R上的函数f(x),若f(-2)≠f(2),则函数f(x)不是偶函数;
③定义在[0,+∞)上函数f(x),若a>0时都有f(a)>f(0),则f(x)是[0,+∞)上增函数;
④定义在R上函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;
⑤对于定义在R上的函数f(x),定义域内的任一个x0都有f(x0)≤M,则称M为函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省百所重点高中高三(上)段考数学试卷(文科)(解析版) 题型:解答题

对于函数f(x),若f(x)=x,则称x为f(x)的:“不动点”;若f[f(x)]=x,则称x为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

同步练习册答案