精英家教网 > 高中数学 > 题目详情
在上学期的期末考试中A、B、C、D四位同学的名次分别为1,2,3,4名,求这次期中考试中:
(1)B同学考第一的概率;
(2)仅有两人名次改变的概率.
考点:互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)根据相互独立事件求解;
(2)是古典概型,先找出事件的所有可能发生的情况,再找出次事件发生的情况,从而求解.
解答: 解:(1)因为在这次期中考试中,谁取得第一相互独立,故B同学考第一的概率是
1
4

(2)在这次期中考试中,共有A44=24中排名,而仅有两人名次改变的有C42A22=12种,
故仅有两人名次改变的概率是:
12
24
=
1
2
点评:本题主要考查相互独立事件的概率的求法和古典概率,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设U=R,A={x|x>0},B={x|x>1},则A∪B=(  )
A、{x|0≤x<1}
B、{x|0<x≤1}
C、{x|x>0}
D、{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

cos420°的值为(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线G的方程为y=
2x
.直线BC与曲线G交于点A,设B(0,b),C(c,0),点A的横坐标为a,当|
.
OA
|=|
.
OB
|时,
(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;
(Ⅱ)设曲线G上点D的横坐标为a+2,求直线CD的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
3x
+x22n的展开式的系数和比(3x-1)n的展开式的系数和大992,则(2x-
1
x
2n的展开式中,求:
(1)第4项;
(2)二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+ϕ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<
π
2

(1)求函数f(x)的解析式.
(2)记g(x)=log2[f(x)-1],求函数g(x)的定义域.
(3)若对任意的x∈[-
π
6
π
6
],不等式log
1
2
f(x)>m-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(4x+1)+kx(k∈R).
(1)若k=0,求不等式f(x)>
1
2
的解集;
(2)若f(x)为偶函数,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1968年墨西哥城举办的奥运会跳远比赛中,比蒙表演了令人惊叹的一跳,以8.90米的成绩刷新了世界记录.若记他起跳后的时间为t秒,比蒙所处的高度为h米,则可以用函数h=4.6t-4.9t2来描述他起跳后高度的变化.
(1)画出函数的图象;
(2)他起跳后的最大高度是多少(精确到0.01米)?
(3)分别记当t=0.4,0.5,0.8时,他所处的高度为h1,h2,h3,求h1,h2,h3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2-2x,x∈[-2,2],求f(x)的单调区间.

查看答案和解析>>

同步练习册答案