精英家教网 > 高中数学 > 题目详情
11.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以CD为直径的半圆内的概率是(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{2}$

分析 利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.

解答 解:∵AB=2,BC=1,
∴长方体的ABCD的面积S=1×2=2,
圆的半径r=1,半圆的面积S=$\frac{π}{2}$,
则由几何槪型的概率公式可得质点落在以AB为直径的半圆内的概率是$\frac{\frac{π}{2}}{2}$=$\frac{π}{4}$,
故选:C.

点评 本题主要考查几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设Sn,Tn分别是数列{an}和{bn}的前n项和,已知对于任意n∈N*,都有3an=2Sn+3,数列{bn}是等差数列,且T5=25,b10=19.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{{a}_{n}{b}_{n}}{n(n+1)}$,数列{cn}的前n项和为Rn,求使Rn>2017成立的n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知线段AE,BF为抛物线C:x2=2py(p>0)的两条弦,点E、F不重合.函数y=ax(a>0且a≠1)的图象所恒过的定点为抛物线C的焦点.
(I)求抛物线C的方程;
(Ⅱ)已知$A({2,1})、B({-1,\frac{1}{4}})$,直线AE与BF的斜率互为相反数,且A,B两点在直线EF的两侧.
①问直线EF的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
②求$\overrightarrow{OE}•\overrightarrow{OF}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)<0,则下列结论正确的是(  )
A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=m-|x+4|(m>0),且f(x-2)≥0的解集为[-3,-1].
(1)求m的值;
(2)若a,b,c都是正实数,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=m$,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=(x-1)(x+2)(x2+ax+b)是偶函数,则f(x)的最小值为(  )
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x>0}\\{0,x=0}\\{{e}^{-x}-ax,x<0}\end{array}\right.$,若函数f(x)有三个零点,则实数a的值是(  )
A.eB.$\frac{1}{e}$C.-$\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=0.7$\stackrel{∧}{x}$+0.3,那么表中m的值为2.8.
x3456
y2.5m44.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|x•ex|,g(x)=f2(x)+λf(x),若方程g(x)=-1有且仅有4个不同的实数解,则实数λ的取值范围是(-∞,-e-$\frac{1}{e}$).

查看答案和解析>>

同步练习册答案