分析 设f(x)=t,研究f(x)的单调性和极值,得出f(x)=t的解的情况,从而确定关于t的方程t2+λt+1=0的解的分布情况,利用二次函数的性质得出λ的范围.
解答 解:f(x)=$\left\{\begin{array}{l}{x{e}^{x},x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,
当x≥0时,f′(x)=ex+xex=(1+x)ex>0,
∴f(x)在[0,+∞)上是增函数,
当x<0时,f′(x)=-ex-xex=(-1-x)ex,
∴当x<-1时,f′(x)>0,当-1<x<0时,f′(x)<0,
∴f(x)在(-∞,-1]上是增函数,在(-1,0)上是减函数.
当x=-1时,f(x)取得极大值f(-1)=$\frac{1}{e}$.
令f(x)=t,
又f(x)≥0,f(0)=0,
则当t<0时,方程f(x)=t无解;
当t=0或t>$\frac{1}{e}$时,方程f(x)=t有一解;
当t=$\frac{1}{e}$时,方程f(x)=t有两解;
当0$<t<\frac{1}{e}$时,方程f(x)=t有三解.
∵g(x)=f2(x)+λf(x)=-1有四个不同的实数解,
∴关于t的方程t2+λt+1=0在(0,$\frac{1}{e}$)和($\frac{1}{e}$,+∞)上各有一解,
∴$\left\{\begin{array}{l}{{λ}^{2}-4>0}\\{\frac{1}{{e}^{2}}+\frac{λ}{e}+1<0}\end{array}\right.$,解得:λ<-e-$\frac{1}{e}$.
故答案为(-∞,-e-$\frac{1}{e}$).
点评 本题考查了函数的零点个数与单调性和极值的关系,二次函数的性质,换元法解题思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1≤x≤4} | B. | {x|x≥1} | C. | {x|-1≤x≤4} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
| P(K2≧k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | ?q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com