精英家教网 > 高中数学 > 题目详情
20.如表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=0.7$\stackrel{∧}{x}$+0.3,那么表中m的值为2.8.
x3456
y2.5m44.5

分析 根据已知表中数据,可计算出数据中心点($\overline{x}$,$\overline{y}$)的坐标,根据数据中心点一定在回归直线上,将($\overline{x}$,$\overline{y}$)的坐标代入回归直线方程$\stackrel{∧}{y}$=0.7$\stackrel{∧}{x}$+0.3,解方程可得m的值.

解答 解:由已知中的数据可得:$\overline{x}$=(3+4+5+6)÷4=4.5,$\overline{y}$=(2.5+m+4+4.5)÷4=$\frac{11+m}{4}$,
∵数据中心点($\overline{x}$,$\overline{y}$)一定在回归直线上,
∴$\frac{11+m}{4}$=0.7×4.5+0.3,
解得m=2.8,
故答案为2.8.

点评 本题考查的知识点是线性回归方程,其中数据中心点($\overline{x}$,$\overline{y}$)一定在回归直线上是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.记min{x,y}=$\left\{\begin{array}{l}{y,x≥y}\\{x,x<y}\end{array}\right.$设f(x)=min{x2,x3},则(  )
A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|>f(t)-f(-t)
C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以CD为直径的半圆内的概率是(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若不等式|x-2|+|x-3|<3的解集是(a,b),则$\int_a^b{(\sqrt{x}-1)dx=}$(  )
A.$\frac{7}{3}$B.$\frac{10}{3}$C.$\frac{5}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos2165°-sin215°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数$\frac{a+i}{1-i}$(i为虚数单位,a为实数)为纯虚数,则不等式|x+a|+|x|>3的解集为(  )
A.{x|x>1}B.{x|x<-2}C.{x|x<-1或x>2}D.{x|x<-2或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y均为正实数,若$\overrightarrow{a}$=(x,y-1),$\overrightarrow{b}$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{x}+\frac{2}{y}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}x-y+1>0\\ x+y-3≥0\\ 2x+y-7≤0\end{array}\right.若x-2y≥m$恒成立,则实数m的取值范围是(-∞,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.华为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数2040805010
男性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数4575906030
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列
联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
女性用户男性用户合计
“认可”手机140180320
“不认可”手机60120180
合计200300500
附:
P(K2≧k)0.050.01
k3.8416.635
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根据评分的不同,运动分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80
分的用户中任意抽取2名用户,求2名用户中评分小于90分概率.

查看答案和解析>>

同步练习册答案