精英家教网 > 高中数学 > 题目详情
20.设i为虚数单位,则复数$\frac{2+i}{1-2i}$=i.

分析 直接由复数代数形式的乘除运算化简复数$\frac{2+i}{1-2i}$,则答案可求.

解答 解:$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}=\frac{5i}{5}=i$,
故答案为:i.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.角α=-$\frac{5π}{2}$,则sinα,tanα的值分别为(  )
A.-1,不存在B.1,不存在C.-1,0D.1,0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知存在实数a,使得关于x的不等式$\sqrt{x}-\sqrt{4-x}≥a$恒成立,则a的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ax2+bx,a,b∈R.若-3x2-1≤f(x)≤6x+2对任意的x∈R恒成立.数列{an}满足${a_1}=\frac{1}{3}$,an+1=f(an)(n∈N*).
(Ⅰ)确定f(x)的解析式;
(Ⅱ)证明:$\frac{1}{3}≤{a_n}<\frac{1}{2}$;
(Ⅲ)设Sn为数列{an}的前n项和,求证:$4{S_n}≥2n-1+\frac{1}{3^n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=3${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若数列{an}的通项为an=$\frac{1}{(2n-1)(2n+3)}$,求其n前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+n+1,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2006}}}}$等于(  )
A.$\frac{4030}{2016}$B.$\frac{2015}{2016}$C.$\frac{4032}{2017}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.幂函数y=f(x)经过点(3,$\sqrt{3}$),则f(x)是(  )
A.偶函数,且在(0,+∞)上是增函数
B.偶函数,且在(0,+∞)上是减函数
C.奇函数,且在(0,+∞)是减函数
D.非奇非偶函数,且在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数y=f(x)在[a,b]上可导且单调递增,则函数g(x)=$\frac{f(x)-f(a)}{x-a}$在(a,b)上的单调性为(  )
A.单调递增B.单调递减C.不增不减D.无法判断

查看答案和解析>>

同步练习册答案