精英家教网 > 高中数学 > 题目详情
18.若向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(4,2)满足(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则k=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 求出k$\overrightarrow{a}$+$\overrightarrow{b}$,然后利用平行的充要条件求解即可.

解答 解:向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(4,2).
k$\overrightarrow{a}$+$\overrightarrow{b}$=(k-1,k+1).
由(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,
可得:4k+4=2k-2.
解得k=-3.
故选:B.

点评 本题考查向量的平行的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=sin(ωx+$\frac{π}{2}$)(ω>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)上有最小值,无最大值,则ω的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=3t+2}\\{y=4t+3}\end{array}}\right.$(t为参数),圆C的极坐标方程为ρ=2cosθ,则圆C的圆心到直线l的距离等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以坐标原点为极点,以x轴的非负半轴为极轴简历极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,$\frac{π}{2}$]
(1)将半圆C化为参数方程;
(2)已知直线l:y=-$\frac{\sqrt{3}}{3}$x+6,点M在半圆C上,过点M斜率为-1直线与l交于点Q,当|MQ|最小值时,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,AB是半圆O的直径,P在AB的延长线上,PD与半圆O相切于点C,AD⊥PD.若PC=4,PB=2,则圆O的半径为3,CD=$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)设α,β∈[-$\frac{π}{2}$,0],f(3α+π)=$\frac{10}{13}$,f(3β+$\frac{5π}{2}$)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设($\sqrt{3}$x-2)8=a8x8+a7x7+a6x6+…+a2x2+a1x1+a0,则(a8+a6+a4+a2+a02-(a7+a5+a3+a12=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知e是自然对数的底数,函数f(x)=ex(x2+5x-2),则f(x)的单调递减区间为[$\frac{-7-\sqrt{37}}{2}$,$\frac{-7+\sqrt{37}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在函数f(x)=alnx-(x-1)2的图象上,横坐标在区间(1,2)内变化的点处的切线斜率均大于1,则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.[6,+∞)D.(6,+∞)

查看答案和解析>>

同步练习册答案