精英家教网 > 高中数学 > 题目详情

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

【答案】B

【解析】本题可用排除法,当时,解得有无数个整数解,排除时,不等式化为,得数个整数解,排除,当时,不等式化为,得恰有数个整数解,排除,故选B.

方法点睛】本题主要考查绝对值不等式的解法、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设x∈R,f(x)= ,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.

1)证明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0且满足不等式22a+1>25a﹣2

(1)求实数a的取值范围;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求的定义域;

(2)若函数的定义域为非空集合,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,总存在,使得,则实数的取值范围是( )

A. B. C. D. 以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 的中点, 是棱 上的点, .

(1)求证:平面 底面
(2)设 ,若二面角 的平面角的大小为 ,试确定 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如下所示.已知[35,40)这组的参加者是8人.
(1)求N和[30,35)这组的参加者人数N1
(2)已知[30,35)和[35,40)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学老师的概率;
(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为x,求x的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案