ÒÑÖªµÈ²îÊýÁÐ{an}µÄͨÏʽΪan=3n-2£¬µÈ±ÈÊýÁÐ{bn}ÖУ¬b1=a1£¬b4=a3+1£®¼Ç¼¯ºÏA={x|x=an£¬n¡ÊN*}£¬B={x|x=bn£¬n¡ÊN*}£¬U=A¡ÈB£¬°Ñ¼¯ºÏUÖеÄÔªËØ°´´ÓСµ½´óÒÀ´ÎÅÅÁУ¬¹¹³ÉÊýÁÐ{cn}£®
£¨¢ñ£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{cn}µÄǰ50ÏîºÍS50£»
£¨¢ó£©°Ñ¼¯ºÏ∁UAÖеÄÔªËØ´ÓСµ½´óÒÀ´ÎÅÅÁй¹³ÉÊýÁÐ{dn}£¬Ð´³öÊýÁÐ{dn}µÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉÇóµÃq£¬´Ó¶øµÃµ½Í¨Ïʽ£»
£¨¢ò£©¸ù¾ÝÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄÔö³¤ËÙ¶È£¬ÅжÏÊýÁÐ{cn}µÄǰ50ÏîÖаüº¬{an}¡¢{bn}µÄÏîµÄÇé¿ö£¬ÔÙ¸ù¾ÝµÈ²îÊýÁÐÇóºÍ¹«Ê½¼´¿ÉµÃµ½½á¹û£»
£¨¢ó£©¾Ý¼¯ºÏBÖÐÔªËØ2£¬8£¬32£¬128∉A£¬²Â²âÊýÁÐ{dn}µÄͨÏʽΪdn=22n-1£¬ÓÉdn=b2n£¬¡àÖ»ÐèÖ¤Ã÷ÊýÁÐ{bn}ÖУ¬b2n-1¡ÊA£¬b2n∉A£¨n¡ÊN*£©£¬Í¨¹ý×÷²îb2n+1-b2n-1£¬¿ÉÅжÏÈôb2n-1¡ÊA£¬Ôòb2n+1¡ÊA£®¸ù¾ÝΪb1¡ÊAÅжÏb2n-1¡ÊA£¨n¡ÊN*£©£®Í¬Àí¿ÉÅжÏb2n∉A£¬´Ó¶øµÃµ½dn=22n-1£®
½â´ð£º½â£º£¨¢ñ£©ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
¡ßb1=a1=1£¬b4=a3+1=8£¬Ôòq3=8£¬¡àq=2£¬
¡àbn=2n-1£»
£¨¢ò£©¸ù¾ÝÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄÔö³¤ËÙ¶È£¬ÊýÁÐ{cn}µÄǰ50ÏîÖÁ¶àÔÚÊýÁÐ{an}ÖÐÑ¡50ÏÊýÁÐ{an}µÄǰ50ÏîËù¹¹³ÉµÄ¼¯ºÏΪ{1£¬4£¬7£¬10£¬¡­£¬148}£¬
ÓÉ2n-1£¼148µÃ£¬n¡Ü8£¬ÊýÁÐ{bn}µÄǰ8Ïî¹¹³ÉµÄ¼¯ºÏΪ{1£¬2£¬4£¬8£¬16£¬32£¬64£¬128}£¬ÆäÖÐ1£¬4£¬16£¬64ÊǵȲîÊýÁÐ{an}ÖеÄÏ2£¬8£¬32£¬128²»ÊǵȲîÊýÁÐÖеÄÏa46=136£¾128£¬¹ÊÊýÁÐ{cn}µÄǰ50ÏîÓ¦°üº¬ÊýÁÐ{an}µÄǰ46ÏîºÍÊýÁÐ{bn}ÖеÄ2£¬8£¬32£¬128Õâ4Ï
ËùÒÔS50==3321£»              
£¨¢ó£©¾Ý¼¯ºÏBÖÐÔªËØ2£¬8£¬32£¬128∉A£¬²Â²âÊýÁÐ{dn}µÄͨÏʽΪdn=22n-1£®
¡ßdn=b2n£¬¡àÖ»ÐèÖ¤Ã÷ÊýÁÐ{bn}ÖУ¬b2n-1¡ÊA£¬b2n∉A£¨n¡ÊN*£©£¬
Ö¤Ã÷ÈçÏ£º¡ßb2n+1-b2n-1=22n-22n-2=4n-4n-1=3×4n-1£¬¼´b2n+1=b2n-1+3×4n-1£¬
Èô?m¡ÊN*£¬Ê¹b2n-1=3m-2£¬ÄÇôb2n+1=3m-2+3×4n-1=3£¨m+4n-1£©-2£¬
ËùÒÔ£¬Èôb2n-1¡ÊA£¬Ôòb2n+1¡ÊA£®ÒòΪb1¡ÊA£¬Öظ´Ê¹ÓÃÉÏÊö½áÂÛ£¬¼´µÃb2n-1¡ÊA£¨n¡ÊN*£©£®
ͬÀí£¬b2n+2-b2n=22n+1-22n-1=2×4n-2×4n-1=3×2×4n-1£¬¼´b2n+2=b2n+3×2×4n-1£¬
ÒòΪ¡°3×2×4n-1¡±ÎªÊýÁÐ{an}µÄ¹«²î3µÄÕûÊý±¶£¬
ËùÒÔ˵Ã÷b2n Óëb2n+2£¨n¡ÊN*£©Í¬Ê±ÊôÓÚA»òͬʱ²»ÊôÓÚA£¬
µ±n=1ʱ£¬ÏÔÈ»b2=2∉A£¬¼´ÓÐb4=2∉A£¬Öظ´Ê¹ÓÃÉÏÊö½áÂÛ£¬¼´µÃb2n∉A£¬
¡àdn=22n-1£»
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄ×ۺϼ°ÊýÁÐÇóºÍ£¬¿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾ÌâÖУ¨¢ó£©ÎÊÏȲºóÖ¤µÄ˼·ֵµÃ½è¼øÑ§Ï°£¬ÒªÏ¸ÐÄÁì»á£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}£¬¹«²îd²»ÎªÁ㣬a1=1£¬ÇÒa2£¬a5£¬a14³ÉµÈ±ÈÊýÁУ»
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãbn=an3n-1£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}ÖУºa3+a5+a7=9£¬Ôòa5=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}Âú×㣺a5=11£¬a2+a6=18£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Èôbn=an+q an£¨q£¾0£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa2=0£¬a6+a8=-10
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»     
£¨2£©ÇóÊýÁÐ{|an|}µÄǰnÏîºÍ£»
£¨3£©ÇóÊýÁÐ{
an2n-1
}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a4a6=-4£¬a2+a8=0£¬n¡ÊN*£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èô{an}ΪµÝÔöÊýÁУ¬Çë¸ù¾ÝÈçͼµÄ³ÌÐò¿òͼ£¬ÇóÊä³ö¿òÖÐSµÄÖµ£¨ÒªÇóд³ö½â´ð¹ý³Ì£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸