¡¾´ð°¸¡¿
·ÖÎö£º£¨¢ñ£©ÉèµÈ±ÈÊýÁÐ{b
n}µÄ¹«±ÈΪq£¬ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉÇóµÃq£¬´Ó¶øµÃµ½Í¨Ïʽ£»
£¨¢ò£©¸ù¾ÝÊýÁÐ{a
n}ºÍÊýÁÐ{b
n}µÄÔö³¤ËÙ¶È£¬ÅжÏÊýÁÐ{c
n}µÄǰ50ÏîÖаüº¬{a
n}¡¢{b
n}µÄÏîµÄÇé¿ö£¬ÔÙ¸ù¾ÝµÈ²îÊýÁÐÇóºÍ¹«Ê½¼´¿ÉµÃµ½½á¹û£»
£¨¢ó£©¾Ý¼¯ºÏBÖÐÔªËØ2£¬8£¬32£¬128∉A£¬²Â²âÊýÁÐ{d
n}µÄͨÏʽΪd
n=2
2n-1£¬ÓÉd
n=b
2n£¬¡àÖ»ÐèÖ¤Ã÷ÊýÁÐ{b
n}ÖУ¬b
2n-1¡ÊA£¬b
2n∉A£¨n¡ÊN
*£©£¬Í¨¹ý×÷²îb
2n+1-b
2n-1£¬¿ÉÅжÏÈôb
2n-1¡ÊA£¬Ôòb
2n+1¡ÊA£®¸ù¾ÝΪb
1¡ÊAÅжÏb
2n-1¡ÊA£¨n¡ÊN
*£©£®Í¬Àí¿ÉÅжÏb
2n∉A£¬´Ó¶øµÃµ½d
n=2
2n-1£®
½â´ð£º½â£º£¨¢ñ£©ÉèµÈ±ÈÊýÁÐ{b
n}µÄ¹«±ÈΪq£¬
¡ßb
1=a
1=1£¬b
4=a
3+1=8£¬Ôòq
3=8£¬¡àq=2£¬
¡àb
n=2
n-1£»
£¨¢ò£©¸ù¾ÝÊýÁÐ{a
n}ºÍÊýÁÐ{b
n}µÄÔö³¤ËÙ¶È£¬ÊýÁÐ{c
n}µÄǰ50ÏîÖÁ¶àÔÚÊýÁÐ{a
n}ÖÐÑ¡50ÏÊýÁÐ{a
n}µÄǰ50ÏîËù¹¹³ÉµÄ¼¯ºÏΪ{1£¬4£¬7£¬10£¬¡£¬148}£¬
ÓÉ2
n-1£¼148µÃ£¬n¡Ü8£¬ÊýÁÐ{b
n}µÄǰ8Ïî¹¹³ÉµÄ¼¯ºÏΪ{1£¬2£¬4£¬8£¬16£¬32£¬64£¬128}£¬ÆäÖÐ1£¬4£¬16£¬64ÊǵȲîÊýÁÐ{a
n}ÖеÄÏ2£¬8£¬32£¬128²»ÊǵȲîÊýÁÐÖеÄÏa
46=136£¾128£¬¹ÊÊýÁÐ{c
n}µÄǰ50ÏîÓ¦°üº¬ÊýÁÐ{a
n}µÄǰ46ÏîºÍÊýÁÐ{b
n}ÖеÄ2£¬8£¬32£¬128Õâ4Ï
ËùÒÔS
50=

=3321£»
£¨¢ó£©¾Ý¼¯ºÏBÖÐÔªËØ2£¬8£¬32£¬128∉A£¬²Â²âÊýÁÐ{d
n}µÄͨÏʽΪd
n=2
2n-1£®
¡ßd
n=b
2n£¬¡àÖ»ÐèÖ¤Ã÷ÊýÁÐ{b
n}ÖУ¬b
2n-1¡ÊA£¬b
2n∉A£¨n¡ÊN
*£©£¬
Ö¤Ã÷ÈçÏ£º¡ßb
2n+1-b
2n-1=2
2n-2
2n-2=4
n-4
n-1=3×4
n-1£¬¼´b
2n+1=b
2n-1+3×4
n-1£¬
Èô?m¡ÊN
*£¬Ê¹b
2n-1=3m-2£¬ÄÇôb
2n+1=3m-2+3×4
n-1=3£¨m+4
n-1£©-2£¬
ËùÒÔ£¬Èôb
2n-1¡ÊA£¬Ôòb
2n+1¡ÊA£®ÒòΪb
1¡ÊA£¬Öظ´Ê¹ÓÃÉÏÊö½áÂÛ£¬¼´µÃb
2n-1¡ÊA£¨n¡ÊN
*£©£®
ͬÀí£¬b
2n+2-b
2n=2
2n+1-2
2n-1=2×4
n-2×4
n-1=3×2×4
n-1£¬¼´b
2n+2=b
2n+3×2×4
n-1£¬
ÒòΪ¡°3×2×4
n-1¡±ÎªÊýÁÐ{a
n}µÄ¹«²î3µÄÕûÊý±¶£¬
ËùÒÔ˵Ã÷b
2n Óëb
2n+2£¨n¡ÊN
*£©Í¬Ê±ÊôÓÚA»òͬʱ²»ÊôÓÚA£¬
µ±n=1ʱ£¬ÏÔÈ»b
2=2∉A£¬¼´ÓÐb
4=2∉A£¬Öظ´Ê¹ÓÃÉÏÊö½áÂÛ£¬¼´µÃb
2n∉A£¬
¡àd
n=2
2n-1£»
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄ×ۺϼ°ÊýÁÐÇóºÍ£¬¿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾ÌâÖУ¨¢ó£©ÎÊÏȲºóÖ¤µÄ˼·ֵµÃ½è¼øÑ§Ï°£¬ÒªÏ¸ÐÄÁì»á£®