精英家教网 > 高中数学 > 题目详情
由两条曲线y=x2,y=
1
4
x2与直线y=1围成平面区域的面积是
 
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可.
解答: 解:由两条曲线y=x2,y=
1
4
x2与直线y=1可得交点坐标为(±1,1),(±2,1),
根据对称性可得S=2[
1
0
(x2)dx+1-
2
1
1
4
x2)dx]=
4
3

故答案为:
4
3
点评:本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知?ABCD中,AB⊥BC,∠BCA=30°,AC=20,PA=5,且PA⊥面ABCD,求P到BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn;且向量
a
=(n,Sn),
b
=(4,n+3)共线.
(1)求数列{an}的通项公式.
(2)求数列{
1
nan
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Rt△ABC的三边分别为a、b、c,∠C=90°,当n∈N*,且n≥2时,an+bn与cn的大小关系为(  )
A、an+bn>cn
B、an+bn<cn
C、an+bn≥cn
D、an+bn≤cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3sinx+2cosy=4,则2sinx+cosy的范围为(  )
A、[-3,3]
B、[
3
2
5
2
]
C、[
7
3
5
2
]
D、[
3
2
17
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(1,0),P是函数y=ex图象上不同于A(0,1)的一点.有如下结论:
①存在点P使得△ABP是等腰三角形;
②存在点P使得△ABP是锐角三角形;
③存在点P使得△ABP是直角三角形.
其中,正确的结论的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC=PA,E是PC的中点,F是PB的中点.
(1)求证:EF∥平面ABC;
(2)求证:EF⊥平面PAC;
(3)求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式中的x:
(1)lg(10x)+1=3lgx;
(2)3lnx-3=ln2x;
(3)lg
x
10
=-2-2lgx;
(4)log
x
(2x)
=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角,A,B,C所对的边分别为a,b,c,已知向量
a
=(a,b),向量
b
=(cosA,3cosB)且
a
b

(1)求证:tanB=3tan A;
(2)若tanC=2,求A的值.

查看答案和解析>>

同步练习册答案