精英家教网 > 高中数学 > 题目详情
已知?ABCD中,AB⊥BC,∠BCA=30°,AC=20,PA=5,且PA⊥面ABCD,求P到BC的距离.
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:由线面垂直得PA⊥BC,PA⊥AB,由AB⊥BC,得BC⊥平面PAB,从而BC⊥PB,由此能求出P到BC的距离.
解答: 解:∵PA⊥平面ABCD,
∴PA⊥BC,PA⊥AB,
∵AB⊥BC,
∴BC⊥平面PAB,
∴BC⊥PB,
AB=
AC
2
=2.5,
PA=0.25,
PB=
AB2+PA2
=
2.52+0.252
101
4

∴P到BC的距离为
101
4
点评:本题考查点到直线的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
)

(1)求函数的解析式.
(2)求函数的定义域与值域.
(3)判断函数单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3f(x)+2f(x)=4x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-1)2=2经过椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F,且F到右准线的距离为2.
(1)求椭圆Γ的方程;
(2)如图,过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求
OM
OQ
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若对于任意的n≥2,都有an•an-1=q,(q是非零常数)成立,则称在数列{an}是等积数列,那么下列描述正确的是(  )
A、a2006=a2
B、a2006=a2007
C、a2006•a2007>0
D、a2006=a2003

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+0.1-2
(2)已知log32=a,3b=5,试用a、b表示log303

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f(x)=
m
2
x2
+lnx-(m+1)x,m∈R.
(Ⅰ)求证:当m=-1时,f(x)≤-
1
2

(Ⅱ)讨论函数f(x)  的单调性;
(Ⅲ)当m≤0时,h(x)=sinx-xcosx-
1
3
x2
+1,若任意x1∈(0,π],均存在x2∈[0,π]使得f(x1)<h(x2)成立,求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个无盖的正方体盒子展开后的平面图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由两条曲线y=x2,y=
1
4
x2与直线y=1围成平面区域的面积是
 

查看答案和解析>>

同步练习册答案