精英家教网 > 高中数学 > 题目详情

【题目】执行如图的程序框图,输出S的值为(
A.ln4
B.ln5
C.ln 5﹣ln4
D.ln 4﹣ln 3

【答案】A
【解析】解:模拟执行程序框图,可得

i=1,S=0

满足条件i<4,S=∫ xdx=lnx| =ln2﹣ln1,i=2

满足条件i<4,S=ln2﹣ln1+ln3﹣ln2=ln3﹣ln1,i=3

满足条件i<4,S=ln3﹣ln1+ln4﹣ln3=ln4﹣ln1=ln4,i=4

不满足条件i<4,退出循环,输出S的值为:ln4.

故选:A.

【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面内,定点A,B,C,O满足 |=2, = ,动点P,M满足 的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,则cosA的值所在区间为(
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: =1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2 , 过点A且斜率为 的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P且斜率大于 的直线与椭圆交于M,N两点(|PM|>|PN|),若SPAM:SPBN=λ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an+1=10an+1.
(1)证明数列{an+ }是等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足bn=lg(an+ ),Tn为数列{ }的前n项和,求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两个焦点为 的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
设函数f(x)=|x+ |+|x﹣2m|(m>0).
(1)求证:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

同步练习册答案