【题目】已知数列{an}满足a1=
,an+1=10an+1.
(1)证明数列{an+
}是等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足bn=lg(an+
),Tn为数列{
}的前n项和,求证:Tn<
.
【答案】
(1)解:由an+1=10an+1得an+1+
=10an+
=10(an+
),
∴
=10,
∴数列{an+
}是等比数列,首项为a1+
=100,公比为10,
∴an+
=100×10n﹣1=10n+1,
所以an=10n+1﹣
.
(2)解:由(1)可得:bn=lg(an+
)=lg10n+1=n+1,
∴
=
=
﹣
,
∴Tn=(
﹣
)+(
﹣
)++(
﹣
)=
﹣
<
,
∴Tn<
.
【解析】(1)由题意可知:构造等比数列,an+1+
=10an+
=10(an+
),则数列{an+
}是以100为首项,10为公比的等比数列,利用等比数列通项公式,即可求得数列{an}的通项公式;(2)由(1)可知bn=lg(an+
)=n+1,利用“裂项法”即可求得Tn,即可求得Tn<
.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系
,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2=r2(r>0)与直线l0:y=
相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足
,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】体积为
的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是( ) ![]()
A.[4π,12π]
B.[8π,16π]
C.[8π,12π]
D.[12π,16π]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:参数方程与极坐标系]
已知曲线C1的参数方程为
(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
.
(Ⅰ)求曲线C2的直角坐标系方程;
(Ⅱ)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB与圆O相切于点B,CD为圆O上两点,延长AD交圆O于点E,BF∥CD且交ED于点F
(Ⅰ)证明:△BCE∽△FDB;
(Ⅱ)若BE为圆O的直径,∠EBF=∠CBD,BF=2,求ADED.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | 30 | ||
女性 | 10 | ||
合计 | 100 |
(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望. 附:K2=
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com