精英家教网 > 高中数学 > 题目详情
椭圆上一点M到焦点的距离为2,的中点,
等于( *** )
A.2B.C.D.
B

分析:|MF|=10-2=8,ON是△MFF的中位线,由此能求出|ON|的值.
解答:解:∵|MF|=10-2=8,
ON是△MFF的中位线,
∴|ON|==4,
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
中心在原点,焦点在x轴上的椭圆,率心率,此椭圆与直线交于A、B两点,且OA⊥OB(其中O为坐标原点).
(1)求椭圆方程;
(2)若M是椭圆上任意一点,为椭圆的两个焦点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的方程为,斜率为1的直线与椭圆交于两点.
(Ⅰ)若椭圆的离心率,直线过点,且,求椭圆的方程;
(Ⅱ)直线过椭圆的右焦点F,设向量,若点在椭圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点,直线轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆的离心率为,过坐标原点且斜率为的直线相交于
⑴求的值;
⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上的一点P,到椭圆一个焦点的距离为3,则P到另一焦点距离为  (  )
A.2 B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的中心为顶点,左准线为准线的抛物线方程是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示焦点在y轴上的椭圆,则k的取值范围是  (   )
A.B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

同步练习册答案