【题目】已知抛物线上一点到焦点的距离.
(1)求抛物线的方程;
(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.
科目:高中数学 来源: 题型:
【题目】谢尔宾斯基三角形(Sierpinskitriangle)是由波兰数学家谢尔宾斯基在1915年提出的,如图先作一个三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的面积,那么灰色三角形为剩下的面积(我们称灰色部分为谢尔宾斯基三角形).若通过该种方法把一个三角形挖3次,然后在原三角形内部随机取一点,则该点取自谢尔宾斯基三角形的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以椭圆的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为,且过点.
(1)求椭圆C及其“伴随”的方程;
(2)过点作“伴随”的切线l交椭圆C于A,B两点,记为坐标原点)的面积为,将表示为m的函数,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:关于的不等式无解;命题:指数函数是上的增函数.
(1)若命题为真命题,求实数的取值范围;
(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点分别与两个定点,的连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与轨迹交于,两点,判断直线与以线段为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与直线交于两点,不与轴垂直,圆.
(1)若点在椭圆上,点在圆上,求的最大值;
(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com