精英家教网 > 高中数学 > 题目详情
19.已知正实数x,y满足x+$\frac{2}{x}$+2y+$\frac{4}{y}$=10,则xy的最大值为$\frac{15+\sqrt{161}}{4}$.

分析 令xy=t可得y=$\frac{t}{x}$,可得10=x+$\frac{2}{x}$+$\frac{2t}{x}$+$\frac{4x}{t}$=(1+$\frac{4}{t}$)x+$\frac{2+2t}{x}$,由基本不等式可得t的不等式,解不等式可得.

解答 解:令xy=t,t>0,则y=$\frac{t}{x}$,
∴10=x+$\frac{2}{x}$+2y+$\frac{4}{y}$=x+$\frac{2}{x}$+$\frac{2t}{x}$+$\frac{4x}{t}$
=(1+$\frac{4}{t}$)x+$\frac{2+2t}{x}$≥2$\sqrt{(1+\frac{4}{t})x•\frac{2+2t}{x}}$
=2$\sqrt{\frac{2(t+1)(t+4)}{t}}$,即2$\sqrt{\frac{2(t+1)(t+4)}{t}}$≤10,
整理可得2t2-15t+8≤0,
解不等式可得$\frac{15-\sqrt{161}}{4}$≤t≤$\frac{15+\sqrt{161}}{4}$,
∴xy的最大值为$\frac{15+\sqrt{161}}{4}$.
故答案为:$\frac{15+\sqrt{161}}{4}$

点评 本题考查基本不等式求最值,涉及换元法和不等式的解法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在公比为$\sqrt{2}$的等比数列{an}中,若sin(a2a3)=$\frac{3}{5}$,则cos(a1a6)的值是(  )
A.-$\frac{4}{5}$B.-$\frac{7}{25}$C.$\frac{4}{5}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sinα,cosα-2sinα),$\overrightarrow{b}$=(1,2),$\overrightarrow{a}$与$\overrightarrow{b}$共线;
(1)求tanα的值;
(2)求$\frac{1+2sinαcosα}{sin^2α-cos^2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式2|x-3|+|x-4|<2a
(1)若a=1,求x取值范围;
(2)若已知不等式解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个圆锥母线长为2,母线与轴的夹角为30°,则该圆锥轴截面面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|logπ$\frac{α}{π}$|<2(α为常数),求使函数f(x)=sin(x+α)+cos(x-α)为偶函数的α的个数,并求所有这些α的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.平面内四点A,B,C,P满足|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{BC}$|,AB=8,$\overrightarrow{CP}$=λ($\overrightarrow{CA}$+$\overrightarrow{CB}$),其中0≤λ≤$\frac{1}{2}$,则△ABC是直角三角形,$\overrightarrow{PC}$•($\overrightarrow{PA}$+$\overrightarrow{PB}$)的取值范围是[-32,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于函数f(x),若存在区间[m,n],使x∈[m,n]时.f(x)∈[km,kn](n∈N*),则称区间[m,n]为函数f(x)的“k倍区间”.若f(x)=x2,则f(x)的“2倍区间”为[0,2].

查看答案和解析>>

同步练习册答案