精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x3-ax2-3x
(1)若f(x)在区间上[1,+∞)是增函数,求实数a的取值范围;
(2)若x=-$\frac{1}{3}$是f(x)的极值点,求f(x)在[-1,a]上的最大值和最小值.

分析 (1)f(x)在区间上[1,+∞)是增函数,转化为导函数大于等于0在[1,+∞)恒成立解;
(2)根据$x=-\frac{1}{3}$是f(x)的极值点,求出a的值,然后求在[-1,a]上的最大值和最小值.

解答 解:(1)函数f(x)=x3-ax2-3x,求导得f′(x)=3x2-2ax-3,
f(x)在区间上[1,+∞)是增函数,则f′(x)=3x2-2ax-3≥0在[1,+∞)恒成立,
即$a≤\frac{3}{2}(x-\frac{1}{x})$在[1,+∞)恒成立,
$a≤{[\frac{3}{2}(x-\frac{1}{x})]_{min}}$,
$x-\frac{1}{x}$在[1,+∞)为增函数,
则${(x-\frac{1}{x})_{min}}=0$,
∴a≤0
(2)f′(x)=3x2-2ax-3,$x=-\frac{1}{3}$是f(x)的极值点,
则${f^'}(-\frac{1}{3})=3×\frac{1}{9}+2a×\frac{1}{3}-3=0$,
解得a=4,f(x)=x3-4x2-12,
${f^'}(x)=3{x^2}-8x-3=(x-3)(3x+1)=0,x=-\frac{1}{3},3$,x,f(x),f′(x)变化如下表:

x-1$(-1,-\frac{1}{3})$$-\frac{1}{3}$$(-\frac{1}{3},3)$3(3,4)4
f′(x)+0-0+
f(x)-2增函数$\frac{14}{27}$减函数-18增函数-12
所以$f{(x)_{max}}=f(-\frac{1}{3})=\frac{14}{27}$,f(x)min=f(3)=-18.

点评 本题考查函数的导数的综合应用,考查函数的单调性以及函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,$\overrightarrow{a}$=($\sqrt{2}$,0)|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=a(x2+2x-2)e-x(a∈R),求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a是实数,函数f(x)=ax2-(1+2a)x+2,
(1)证明:函数y=f(x)一定有零点.
(2)如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正三棱锥的侧棱长为1,底面正三角形的边长为$\sqrt{2}$.现从该正三棱锥的六条棱中随机选取两条棱,则这两条棱互相垂直的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=sin($\frac{5}{2}$π+2x)的图象的一条对称轴的方程是(  )
A.$x=-\frac{π}{2}$B.$x=-\frac{π}{4}$C.$x=-\frac{π}{8}$D.$x=\frac{5}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}({3-a})x-a,x<1\\{log_a}x,x≥1\end{array}$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.(1,+∞)B.$({\frac{3}{2},+∞})$C.$[{\frac{3}{2},3})$D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R),则“f(x)在x=1处取最大值”是“f(x+1)为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知m2+2mn=13,3mn+2n2=21,那么2m2+13mn+6n2-44的值为(  )
A.45B.55C.66D.77

查看答案和解析>>

同步练习册答案