精英家教网 > 高中数学 > 题目详情

给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有数学公式成立,则f(x)在R上是增函数;
数学公式的单调减区间是(-∞,0)∪(0,+∞).
正确的有 ________.

①④
分析:根据幂函数的图象的性质,可判断①正确,根据奇函数的定义,可判断②的正误;根据对折变换的图象变化及二次函数的单调性,可判断③的真假;根据单调性的定义,可判断④是正确的;根据单调区间的定义,可以判断⑤的对错.
解答:由幂函数的图象的性质,易得幂函数的图象一定不过第四象限,故①正确;
若奇函数在x=0时有意义,则图象一定过坐标原点,但奇函数在x=0时无意义时,则图象不过坐标原点,故②错误;
y=x2-2|x|-3的递增区间有两个:[-1,0]和[1,+∞)故③错误;
,则f(x)在R上是增函数,故④正确;
的单调减区间有两个:(-∞,0)和(0,+∞),但函数在区间(-∞,0)∪(0,+∞)上不具备单调性,故⑤错误;
故答案为:①④
点评:本题考查的知识点是幂函数的图象的性质,奇函数的定义,单调性的定义,单调区间的定义,熟练掌握函数的图象和性质,理解函数性质的定义是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有
f(a)-f(b)
a-b
>0
成立,则f(x)在R上是增函数;
f(x)=
1
x
的单调减区间是(-∞,0)∪(0,+∞).
正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列说法:①函数y=
1
x
是幂函数;②若x+y≠8,则x≠2或y≠6;③命题:“矩形对角线相等”的否定是“矩形对角线不相等”;④若函数f(x)的定义域是[-1,1],则函数y=f(x2)的定义域是[0,1].其中正确的有(  )

查看答案和解析>>

科目:高中数学 来源:2015届江西省九江市高一上学期第一次段考数学试卷(解析版) 题型:填空题

给出下列说法:①幂函数的图象一定不过第四象限;②奇函数图象一定过坐标原点;③ 的递增区间为;④定义在R上的函数对任意两个不等实数a、b,总有成立,则在R上是增函数;⑤的单调减区间是;正确的有____________

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有
f(a)-f(b)
a-b
>0
成立,则f(x)在R上是增函数;
f(x)=
1
x
的单调减区间是(-∞,0)∪(0,+∞).
正确的有 ______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省九江市修水一中高一(上)段考数学试卷(解析版) 题型:填空题

给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有成立,则f(x)在R上是增函数;
的单调减区间是(-∞,0)∪(0,+∞).
正确的有    

查看答案和解析>>

同步练习册答案