精英家教网 > 高中数学 > 题目详情

【题目】某种产品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如表对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回归直线方程;
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(2)试预测广告费支出为10万元时,销售额多大?

【答案】
(1)解:由已知可得 =5, =50,

因此,所求回归直线方程是


(2)解:根据上面求得的线性回归方程,当广告费支出为10万元时, (万元),即这种产品的销售收入大约为82.5万元
【解析】(1)根据表中数据,求出x,y的平均数,及xi2的累加值,及xiyi的累加值,代入回归直线系数计算公式,即可求出回归直线方程.(2)将x=10万元代入回归直线方程,解方程即可求出相应的销售额.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 平面经过,直线则平面截该正方体所得截面的面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽(约公元 225 —295 年)是魏晋时期伟大的数学家,中国古典数学理论的奠基人之一,他的杰作《九章算术注》和《海岛算经》是中国宝贵的古代数学遗产. 《九章算术·商功》中有这样一段话:斜解立方,得两壍堵. 斜解壍堵,其一为阳马,一为鳖臑.” 刘徽注:此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.” 其实这里所谓的鳖臑(biē nào,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥. 如图,在三棱锥中, 垂直于平面 垂直于,且 ,则三棱锥的外接球的球面面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是公差不为0的等差数列的前项和,且成等比数列,.

(1)求数列的通项公式;

(2)设是数列的前项和,求使得对所有都成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式
(3)求函数g(x)=|logax﹣1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成下面2×2列联表:

喜爱运动

不喜爱运动

总计

10

16

6

14

总计

30


(2)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(3)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2= ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.40

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.

(1)求该配送站每天需支付快递员的总工资最小值;

(2)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?

(参考数据: .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=
(1)判断f(x)在区间[0,+∞)上是否为弱减函数;
(2)当x∈[1,3]时,不等式 恒成立,求实数a的取值范围;
(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案