精英家教网 > 高中数学 > 题目详情

【题目】已知下面四个命题:

①“若,则”的逆否命题为“若,则

②“”是“”的充分不必要条件

③命题“若,则”的逆否命题为真命题

④若为假命题,则均为假命题,其中真命题个数为( )

A. B. C. D.

【答案】C

【解析】

根据逆否命题与原命题之间的关系可判断出命题①的真假;解出不等式,利用集合的包含关系可判断出命题②的真假;判断出原命题的真假,再由原命题与逆否命题的真假性一致可判断出命题③的真假;由复合命题的真假与简单命题的真假可判断出命题④的真假.

对于命题①,由原命题与逆否命题的关系可知,命题①为真命题;

对于命题②,解不等式,得,所以,“”是“”的充分不必要条件,命题②为真命题;

对于命题③,命题“若,则”为真命题,其逆否命题也为真命题,则命题③为真命题;

对于命题④,若为假命题,则中至少有一个是假命题,则命题④为假命题.

因此,真命题个数为,故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)判断并证明在区间上的单调性;

2)若函数与函数上有相同的值域,求的值;

3)函数,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数部分图象如图所示.

1)求函数的解析式;

2)将函数的图象做怎样的变换可以得到函数的图象;

3)若方程上有两个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式对任意实数都成立,则实数的取值范围_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为: 为参数).

(1)求曲线的直角坐标方程与曲线的普通方程;

(2)将曲线经过伸缩变换后得到曲线,若 分别是曲线和曲线上的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数(其中).

(1)当时,求不等式的解集;

(2)若关于的不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

1)当时,求函数的单调递增区间;

2)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数类对称点,当时,试问是否存在类对称点,若存在,请至少求出一个类对称点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.

(1)求样本容量和抽取的高中生近视人数分别是多少?

(2)在抽取的名高中生中,平均每天学习时间超过9小时的人数为,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:

平均学习时间不超过9小时

平均学习时间超过9小时

总计

不近视

近视

总计

(3)根据(2)中的列联表,判断是否有的把握认为高中生平均每天学习时间与近视有关?

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018101日起,中华人民共和国个人所得税新规定,公民月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

全月应纳税所得额

税率

不超过1500元的部分

3

超过1500元不超过4500元的部分

10

超过4500元不超过9000元的部分

20

超过9000元不超过35000

25

如果小李10月份全月的工资、薪金为7000元,那么他应该纳税多少元?

如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?

写出工资、薪金收入与应缴纳税金的函数关系式.

查看答案和解析>>

同步练习册答案