精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.
分析:(I)利用正三棱柱的性质,可得BB1⊥AD,结合菱形ABDC的对角线AD⊥BC,可证出AD⊥平面BCC1B1,最后结合面面垂直的判定定理,可得平面ADC1⊥平面BCC1B1
(II)由题意,易得正三棱柱ABC-A1B1C1的体积,再根据(I)中的线面垂直结合题中所给的数据算出四棱锥D-B1C1CB的体积,将两体积相加即得求该多面体的体积.
解答:解:(Ⅰ)∵三棱柱ABC-A1B1C1是正三棱柱,∴BB1⊥AD,
又∵四边形ABDC是菱形,∴AD⊥BC,
∵BB1,BC?平面BB1C1C,且BC∩BB1=B,
∴AD⊥平面BCC1B1…(5分)
∵AD?平面ADC1
∴平面ADC1⊥平面BCC1B1…(7分)
(Ⅱ)∵正三角形ABC边长为2,可得S△ABC=
3
4
×22=
3
,三棱柱的高AA1=2
∴正三棱柱ABC-A1B1C1的体积为V1=S△ABC×AA1=2
3
…(10分)
又∵AD⊥平面BCC1B1,可得四棱锥D-B1C1CB的高在AD上且等于AD的
1
2

∴四棱锥D-B1C1CB的体积为V2=
1
3
SBCC1B1×(
1
2
AD)=
4
3
3
…(13分)
所以该多面体的体积为V=V1+V2=
10
3
3
…(14分)
点评:本题给出由正三棱柱和四棱锥拼接而成的一个多面体,叫我们证明面面垂直并且求该多面体的体积,着重考查了空间面面垂直的判定和组合几何体的体积计算等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

同步练习册答案