精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.
分析:化圆的极坐标方程为普通方程,联立方程组求出两个交点的坐标,然后利用两点间的距离公式求解.
解答:解:由ρ=1,得ρ2=1,即x2+y2=1,
又ρ=2cos(θ+
π
3
)
=2(cosθcos
π
3
-sinθsin
π
3
)=2(
1
2
cosθ-
3
2
sinθ),
∴ρ2=ρcosθ-
3
ρsinθ,∴x2+y2-x+
3
y=0,
x2+y2=1
x2+y2-x+
3
y=0
,解得
x1=1
y1=0
x2=-
1
2
y2=-
3
2

则A(1,0),B(-
1
2
,-
3
2
).
所以|AB|=
(-
1
2
-1)2+(-
3
2
-0)2
=
3

所以线段AB的长为
3
点评:本题考查了简单曲线的极坐标方程,训练了二元二次方程组的解法,考查了两点间的距离公式,是基础的运算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.

查看答案和解析>>

同步练习册答案