精英家教网 > 高中数学 > 题目详情
16.设a1,a2,…an是正整数1,2,3,…,n的一个排列,令bj表示排在j的左边且比j大的数的个数,称为j的逆序数.如在排列3,5,1,4,2,6中,5的逆序数是0,2的逆序数是3,则由1至8这8个数字构成的所有排列中,满足1的逆序数是2,2的逆序数是3,5的逆序数是3的不同排列种数是(  )
A.144B.172C.180D.192

分析 由题意知1必在第3位,2必在第5位; 5可以在第6位,5也可以在第7位,5也可以在第8位;分3种情况进行讨论.

解答 解:由题意知,1必在第3位,2必在第5位; 5可以在第6位,5可以在第7位,5在第8位.
若5在第6位,则5前面有3个空位,需从6,7,8中选出3个填上,
把剩下的2个数填在5后面的2个空位上,则有A33A22=12种,
若5在第7位,则5前面有4个空位,其中3,4当中的一个应填在其中的一个空位上,余下3个空位,需从6,7,8中选出3个填上则有C21A44=48种,
若5在第8位,则5前面有5个空位,则有A55=120种,
合计为:12+48+120=180种,
故选:C.

点评 本题考查排列、组合及简单计数问题的应用,体现了分类讨论的数学思想,本题解题的关键是分类时做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在四棱柱ABCD一A1B1C1D1中,底面ABCD是菱形,且AB=AA1=$\sqrt{5}$,BD=4,A1在底面 ABCD的射影是AC与BD的交点O.
(1)证明:在侧棱AA1上存在-点E,使得0E⊥平面BB1D1D,并求出AE的长;
(2)求二面角A1一B1D-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知M(a,5-a,2a-1),N(1,a+2,2-a)两点,当|MN|取得最小值时,a的值是(  )
A.19B.$\frac{19}{14}$C.-$\frac{8}{7}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.上饶市政府为缓解城市交通压力,计划对金龙岗路等交通要道由双向通行改为单项通行,为调查金龙岗路的通行能力,交警部门将某一天24小时分为六个时段,分别是[0,4)…[20,24)(小时),并记录每一时段通行此路的机动车的辆数,共计为600辆,绘制如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求在时段[12,16)上通行此路车辆的频率;
(2)用分层抽样的方法在[8,16)时间段通行此路的车辆中抽取一个容量为6的样本,从这个样本中任取2辆车,求在此时间段[12,16)上至多有辆车通行的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果存在实数x使不等式|x+2|-|x-1|<k成立,则实数k的取值范围是(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$表示的平面区域的面积为(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l1:3x+4y-12=0,l2:7x+y-28=0,则直线l1与l2的夹角是(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数.若牛奶放在0℃的冰箱中,保鲜时间约是200h,而在1℃的温度下则是160h.
(1)写出保鲜时间y关于储藏温度x的函数解析式;
(2)利用(1)的结论,指出温度在2℃和3℃的保鲜时间.

查看答案和解析>>

同步练习册答案