精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sinx•sin(
π
2
-x)-2cos(π+x)•cosx+2

(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,若f(A)=4,b=1,△ABC的面积为
3
2
,求a的值.
分析:(1)根据诱导公式和二倍角公式、两角和的正弦公式对解析式化简,再由周期公式求f(x)的最小正周期;
(2)把条件代入f(x)的解析式化简,再由A的范围和正弦值求A,结合三角形面积公式条件和余弦定理求出边a.
解答:解:(1)f(x)=2
3
sinx•sin(
π
2
-x)-2cos(π+x)•cosx+2

=2
3
sinx•cosx+2cosx•cosx+2

=
3
sin2x+(1+cos2x)+2
=
3
sin2x+cos2x)+3
=2sin(2x+
π
6
)+3
∴T=
2
=π.
(2)由f(A)=4得2sin(2A+
π
6
)+3=4,∴sin(2A+
π
6
)=
1
2

又∵A为△ABC的内角,∴
π
6
<2A+
π
6
13π
6
,∴2A+
π
6
=
6
,A=
π
3

由S△ABC=
3
2
,得
1
2
bcsinA=
1
2
×1×c×
3
2
=
3
2
,c=2.
由余弦定理得a2=b2+c2-2bccosA=1+4-2×
1
2
=3,∴a=
3
点评:本题考查了三角恒等变换、正弦函数的性质的应用,以及余弦定理的综合应用,关键是正确对解析式进行化简,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案