精英家教网 > 高中数学 > 题目详情
3.函数f(x)=m+logax(a>0且a≠1)的图象过点(16,3)和(1,-1).
(1)求函数f(x)的解析式;
(2)令g(x)=2f(x)-f(x-1),求 g(x)的最小值及取得最小值时x的值.

分析 (1)由题意图象过点(16,3)和(1,-1).将坐标带入函数f(x)=m+logax,求出m和a,即得到函数f(x)的解析式;
(2)根据函数f(x)的解析式求出g(x),利用复合函数的单调性求解最值.

解答 解:(1)由题意:函数f(x)=m+logax(a>0且a≠1)的图象过点(16,3)和(1,-1).
则有:$\left\{\begin{array}{l}{3=m+lo{g}_{a}16}\\{-1=m+lo{g}_{a}1}\end{array}\right.$,解得:m=-1,a=2,
∴函数f(x)的解析式为:f(x)=-1+log2x.
(2)由题意:g(x)=2f(x)-f(x-1),
那么:$g(x)=2f(x)-f(x-1)=2(-1+{log_2}x)-[-1+{log_{2(}}(x-1)]={log_2}\frac{x^2}{x-1}-1(x>1)$,
令$u=\frac{{x}^{2}}{x-1}$(x>1),则g(x)=log2u在(0,+∞)上是单调递增;
∵$\frac{x^2}{x-1}=\frac{{{{(x-1)}^2}+2(x-1)+1}}{x-1}=(x-1)+\frac{1}{x-1}+2≥2\sqrt{(x-1)\frac{1}{x-1}}+2=4$
当且仅当$x-1=\frac{1}{x-1},即x=2时,等号成立$.
而函数g(x)=log2u(u>0)在(0,+∞)上单调递增.
故当x=2时,函数g(x)取得最小值为1.

点评 本题考查了对数函数的计算机解析式的求法,复合函数的单调性求最值的问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}}$)=$\frac{1}{4}$,则$\frac{cosα+sinα}{cosα-sinα}$的值为(  )
A.$\frac{13}{18}$B.$\frac{1}{6}$C.$\frac{13}{22}$D.$\frac{3}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性,并说明理由.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$,x∈(-1,1);
(3)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1);
(4)f(x)=$\left\{\begin{array}{l}{x(1-x),(x<0)}\\{x(1+x),(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=(1-2i)2的实部为(  )
A.3B.5C.-3D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数y=f(x)的定义域为R,满足下列性质:(1)f(0)≠0;(2)当x<0时,f(x)>1;(3)对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.
(I) 求f(0)及f(x)*f(-x)的值;
(Ⅱ)判断函数g(x)=$\frac{1+f(x)}{1-f(x)}$是否具有奇偶性,并证明你的结论;
(Ⅲ)求证:y=f(x)是R上的减函数;
(Ⅳ)若数列{an}满足a1=f(0),且f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),求证:{an}是等差数列,并求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,则实数a的取值范围是(  )
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点G为△ABC的重心,且AG⊥BG,AB=2,则$\overrightarrow{CA}$•$\overrightarrow{CB}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(cos(2x+$\frac{π}{3}$),sinx),函数f(x)=$\vec a$•$\vec b$-$\frac{1}{2}$cos2x.
(1)求函数f(x)的解析式及最小正周期;
(2)当x∈[0,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案