精英家教网 > 高中数学 > 题目详情
13.已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}}$)=$\frac{1}{4}$,则$\frac{cosα+sinα}{cosα-sinα}$的值为(  )
A.$\frac{13}{18}$B.$\frac{1}{6}$C.$\frac{13}{22}$D.$\frac{3}{22}$

分析 利用同角三角函数的基本关系化简要求的式子,再利用两角差的正切公式求得结果.

解答 解:∵tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}}$)=$\frac{1}{4}$,
则$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1+tanα}{1-tanα}$=tan($\frac{π}{4}$+α)=tan[(α+β)-(β-$\frac{π}{4}$)]=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$
=$\frac{\frac{2}{5}-\frac{1}{4}}{1+\frac{2}{5}•\frac{1}{4}}$=$\frac{3}{22}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin2x+cos2x的图象向左平移$φ(0<φ<\frac{π}{2})$个单位后,得到的函数g(x)为偶函数,则(  )
A.g(x)的图象关于直线$x=\frac{π}{2}$对称B.g(x)的图象关于点(π,0)对称
C.g(x)在$[0,\frac{π}{2}]$上递增D.g(x)在[0,π]上递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.做投掷2个骰子试验,用(x,y)表示点P的坐标,其中x表示第1个骰子出现的点数,y表示第2个骰子出现的点数,则点P的坐标(x,y)满足16<x2+y2≤25的概率为(  )
A.$\frac{7}{36}$B.$\frac{4}{21}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知${({\sqrt{x}-\frac{1}{{2\root{4}{x}}}})^n}$的展开式中的二项式系数之和为256.
(Ⅰ)证明:展开式中没有常数项;
(Ⅱ)求展开式中所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的对称轴为坐标轴,一个焦点为F(0,-$\sqrt{2}}$),点M(1,$\sqrt{2}}$)在椭圆C上
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l:2x-y-2=0与椭圆C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x+a|+|x-2|,且f(x)≤|x-4|的解集包含[1,2],则a的取值范围为[-3,0]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=$\frac{e^x}{{1+a{x^2}}}$,其中a为正实数.
(1)求证:直线y=x+1恒为曲线f(x)=$\frac{e^x}{{1+a{x^2}}}$的切线;
(2)当a=$\frac{4}{3}$时,求f(x)的极值点;
(3)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆方程9x2+4y2=1,则椭圆的焦点坐标(  )
A.($\sqrt{5}$,0),(-$\sqrt{5}$,0)B.(0,$\sqrt{5}$),(0,-$\sqrt{5}$)C.($\frac{\sqrt{5}}{6}$,0),(-$\frac{\sqrt{5}}{6}$,0)D.(0,$\frac{\sqrt{5}}{6}$),(0,-$\frac{\sqrt{5}}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=m+logax(a>0且a≠1)的图象过点(16,3)和(1,-1).
(1)求函数f(x)的解析式;
(2)令g(x)=2f(x)-f(x-1),求 g(x)的最小值及取得最小值时x的值.

查看答案和解析>>

同步练习册答案