分析 (1)首先求出直线y=x+1与曲线y=f(x)的公共点为(0,1),再证明y=x+1就是曲线在该点处的切线
(2)先求导数,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,通过列表来确定极值点即可
(3)根据a为正实数,确定f(x)只能是单调递增函数,故f'(x)≥0恒成立,再根据二次函数的性质,得到△≤0,从而求出a的取值范围
解答 f'(x)=$\frac{{e}^{x}(1+a{x}^{2})-2{e}^{x}ax}{(1+a{x}^{2})^{2}}=\frac{(a{x}^{2}-2ax+1){e}^{x}}{(1+a{x}^{2})^{2}}$,
(1)∵f(0)=1,∴点(0,1)是直线y=x+1与曲线$f(x)=\frac{{e}^{x}}{1+a{x}^{2}}$的公共点,
又∵f'(0)=1,
∴直线y=x+1恒为曲线$f(x)=\frac{{e}^{x}}{1+a{x}^{2}}$的切线,
(2)当$a=\frac{4}{3}$时,$f'(x)=\frac{(\frac{4}{3}{x}^{2}-\frac{8}{3}x+1){e}^{x}}{(1+\frac{4}{3}{x}^{2})^{2}}=\frac{\frac{4}{3}(x-\frac{1}{2})(x-\frac{3}{2}){e}^{x}}{(1+\frac{4}{3}{x}^{2})^{2}}$,
由f'(x)=0,得${x}_{1}=\frac{1}{2},{x}_{2}=\frac{3}{2}$,
当x变化时,f'(x)与f(x)的相应变化如下表:
| X | (-∞,$\frac{1}{2}$ ) | $\frac{1}{2}$ | $(\frac{1}{2},\frac{3}{2})$ | $\frac{3}{2}$ | $(\frac{3}{2},+∞)$ |
| f’(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
点评 本题主要考查了利用导数研究函数的极值以及根据函数的单调性求参数的取值范围,是高考中的热点问题,属于基础题
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 4个 | C. | 5个 | D. | 6个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{18}$ | B. | $\frac{1}{6}$ | C. | $\frac{13}{22}$ | D. | $\frac{3}{22}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{1}{3}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{3},+∞})$ | B. | $[{\frac{1}{5},+∞})$ | C. | $\left\{1\right\}∪[{\frac{1}{3},+∞})$ | D. | $\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com