精英家教网 > 高中数学 > 题目详情
5.设f(x)=$\frac{e^x}{{1+a{x^2}}}$,其中a为正实数.
(1)求证:直线y=x+1恒为曲线f(x)=$\frac{e^x}{{1+a{x^2}}}$的切线;
(2)当a=$\frac{4}{3}$时,求f(x)的极值点;
(3)若f(x)为R上的单调函数,求a的取值范围.

分析 (1)首先求出直线y=x+1与曲线y=f(x)的公共点为(0,1),再证明y=x+1就是曲线在该点处的切线
(2)先求导数,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,通过列表来确定极值点即可
(3)根据a为正实数,确定f(x)只能是单调递增函数,故f'(x)≥0恒成立,再根据二次函数的性质,得到△≤0,从而求出a的取值范围

解答 f'(x)=$\frac{{e}^{x}(1+a{x}^{2})-2{e}^{x}ax}{(1+a{x}^{2})^{2}}=\frac{(a{x}^{2}-2ax+1){e}^{x}}{(1+a{x}^{2})^{2}}$,
(1)∵f(0)=1,∴点(0,1)是直线y=x+1与曲线$f(x)=\frac{{e}^{x}}{1+a{x}^{2}}$的公共点,
又∵f'(0)=1,
∴直线y=x+1恒为曲线$f(x)=\frac{{e}^{x}}{1+a{x}^{2}}$的切线,
(2)当$a=\frac{4}{3}$时,$f'(x)=\frac{(\frac{4}{3}{x}^{2}-\frac{8}{3}x+1){e}^{x}}{(1+\frac{4}{3}{x}^{2})^{2}}=\frac{\frac{4}{3}(x-\frac{1}{2})(x-\frac{3}{2}){e}^{x}}{(1+\frac{4}{3}{x}^{2})^{2}}$,
由f'(x)=0,得${x}_{1}=\frac{1}{2},{x}_{2}=\frac{3}{2}$,
当x变化时,f'(x)与f(x)的相应变化如下表:

X(-∞,$\frac{1}{2}$ )$\frac{1}{2}$  $(\frac{1}{2},\frac{3}{2})$ $\frac{3}{2}$  $(\frac{3}{2},+∞)$
f’(x)+0-0+
f(x)极大值  极小值
所以$x=\frac{1}{2}$是f(x)的极大值点,$x=\frac{3}{2}$是f(x)的极小值点,
(3)∵f(x)是R上的单调函数,且a为正实数,
∴f(x)为R上的单调递增函数,
∴f'(x)≥0恒成立,即ax2-2ax+1≥0恒成立,
∴△=4a2-4a≤0,又∵a>0,
∴0<a≤1.

点评 本题主要考查了利用导数研究函数的极值以及根据函数的单调性求参数的取值范围,是高考中的热点问题,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.将二项式${({\sqrt{x}+\frac{1}{{2\root{3}{x}}}})^n}$的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.sin(-$\frac{17π}{6}$)+cos(-$\frac{20π}{3}$)+tan(-$\frac{53π}{6}$)=-1+$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}}$)=$\frac{1}{4}$,则$\frac{cosα+sinα}{cosα-sinα}$的值为(  )
A.$\frac{13}{18}$B.$\frac{1}{6}$C.$\frac{13}{22}$D.$\frac{3}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x2+ax+a(x∈R),g(x)=ex,h(x)=$\frac{f(x)}{g(x)}$.
(1)当a=1时,求h(x)的单调区间;
(2)求h(x)在x∈[1,+∞)是递减的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某小区有1000户,各户每月的用电量近似服从正态分布N(300,l00),则用电量在320度以上的户数估计约为(  )
A.17B.23C.34D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和为Sn,若S6=2S3,则$\frac{{{S}_{12}}}{{{S}_{3}}}$=(  )
A.3B.4C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性,并说明理由.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$,x∈(-1,1);
(3)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1);
(4)f(x)=$\left\{\begin{array}{l}{x(1-x),(x<0)}\\{x(1+x),(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,则实数a的取值范围是(  )
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

查看答案和解析>>

同步练习册答案